|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Estimation problem workflow\n", |
| 8 | + "\n", |
| 9 | + "For a multivariate random variable $X$ and a real-valued function $f$ the goal is to compute \n", |
| 10 | + "\n", |
| 11 | + "$$\n", |
| 12 | + " \\mathbb{E}[f(X)], \\text{ where } f: \\mathbb{R}^n \\mapsto I \\subset \\mathbb R\n", |
| 13 | + "$$\n", |
| 14 | + "\n", |
| 15 | + "Here, this is achieved using quantum amplitude estimation (QAE), based on a $\\mathcal{A}$ operator in the format\n", |
| 16 | + "\n", |
| 17 | + "$$\n", |
| 18 | + " \\mathcal{A}|0\\rangle = \\sqrt{1 - a}|\\Psi_0\\rangle + \\sqrt{a}|\\Psi_1\\rangle\n", |
| 19 | + " = \\sum_{\\hat x = 0}^{2^n - 1} \\sqrt{p_{\\phi(\\hat x)} (1 - \\hat f(\\phi(\\hat x)))} |x\\rangle |0\\rangle\n", |
| 20 | + " + \\sum_{\\hat x = 0}^{2^n - 1} \\sqrt{p_{\\phi(\\hat x)} \\hat f(\\phi(\\hat x))} |x\\rangle |1\\rangle\n", |
| 21 | + "$$\n", |
| 22 | + "\n", |
| 23 | + "To revert the scalings from $f$ to $\\hat f$ and possible post-processing from the function approximation, the result of QAE, $\\tilde a$, is mapped to the result via a post-processing function $\\eta$\n", |
| 24 | + "\n", |
| 25 | + "$$\n", |
| 26 | + "\\mathbb{E}[f(X)] = \\eta(a) \\approx \\eta(\\tilde a)\n", |
| 27 | + "$$\n", |
| 28 | + "\n", |
| 29 | + "**Notes:**\n", |
| 30 | + "\n", |
| 31 | + "An amplitude function $F$ of a function $\\hat f$ is a mapping\n", |
| 32 | + "\n", |
| 33 | + "$$\n", |
| 34 | + "F: |x\\rangle|0\\rangle \\mapsto \\sqrt{1 - \\hat f(x)}|x\\rangle|0\\rangle + \\sqrt{\\hat f(x)}|x\\rangle|1\\rangle\n", |
| 35 | + "$$\n", |
| 36 | + "\n", |
| 37 | + "where\n", |
| 38 | + "\n", |
| 39 | + "$$\n", |
| 40 | + "\\hat f: \\mathbb{N}_0 \\rightarrow [0, 1].\n", |
| 41 | + "$$\n", |
| 42 | + "\n", |
| 43 | + "If we have a function $f$ that does not act on these spaces we must normalize the image and apply an affine transformation from the input domain to $\\mathbb{N}_0$. Let the function $f$ be defined on $2^n$ equidistant points in $[a, b]$:\n", |
| 44 | + "\n", |
| 45 | + "$$\n", |
| 46 | + "f: [a, b] \\rightarrow [c, d]\n", |
| 47 | + "$$\n", |
| 48 | + "\n", |
| 49 | + "then the rescaled version is\n", |
| 50 | + "\n", |
| 51 | + "$$\n", |
| 52 | + "\\hat f(x) = \\frac{f(\\phi(x)) - c}{d - c}\n", |
| 53 | + "$$\n", |
| 54 | + "\n", |
| 55 | + "where $\\phi(x) = a + (b - a) x / 2^n$ is the affine transformation.\n", |
| 56 | + "\n", |
| 57 | + "The normalized function $\\hat f$ can be implemented in different manners. In general this requires a post-processing step, $\\zeta$:\n", |
| 58 | + "\n", |
| 59 | + "$$\n", |
| 60 | + "\\hat f \\approx \\zeta(T\\hat f)\n", |
| 61 | + "$$\n", |
| 62 | + "\n", |
| 63 | + "where $T\\hat f$ is the amplitude we can map onto the qubits.\n", |
| 64 | + "One example is a Taylor approximation of $\\sin^2$ which can be mapped to qubits using RY gates.\n", |
| 65 | + "\n", |
| 66 | + "Examples:\n", |
| 67 | + "\n", |
| 68 | + "* quadratic terms can be approximated with\n", |
| 69 | + " $$\n", |
| 70 | + " ax^2 \\approx \\sin^2(c\\sqrt{a}x) / c^2\n", |
| 71 | + " $$\n", |
| 72 | + " where the sine part is estimated with amplitude estimation and the rescaling is $\\zeta(x) = x/c^2$\n", |
| 73 | + " \n", |
| 74 | + "* linear terms can be approximated as\n", |
| 75 | + " $$\n", |
| 76 | + " ax \\approx \\zeta\\left( \\sin^2\\left(\\frac{\\pi}{4} + \\frac{\\pi c}{2} \\left(f(x) - \\frac{1}{2}\\right)\\right) \\right) \n", |
| 77 | + " $$\n", |
| 78 | + " with\n", |
| 79 | + " $$\n", |
| 80 | + " \\zeta(x) = \\frac{2}{\\pi c}\\left(x - \\frac{1}{2}\\right) + \\frac{1}{2}\n", |
| 81 | + " $$\n", |
| 82 | + "\n", |
| 83 | + "Let $\\tilde a$ be the output of amplitude estimation, then in general we have to apply a post-processing in the form of\n", |
| 84 | + "\n", |
| 85 | + "$$\n", |
| 86 | + "c + (d - c) \\zeta(\\tilde a)\n", |
| 87 | + "$$" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "markdown", |
| 92 | + "metadata": {}, |
| 93 | + "source": [ |
| 94 | + "## Defining the random variable\n", |
| 95 | + "\n", |
| 96 | + "The distribution of the random variable is loaded from the circuit library. The function will be evaluated on the x-values ``[0, ..., 2 ** num_qubits - 1]``. " |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": null, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "from qiskit.circuit.library import NormalDistribution\n", |
| 106 | + "X = NormalDistribution(num_qubits=3, mu=1, sigma=0.5, bounds=(0, 2))" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "markdown", |
| 111 | + "metadata": {}, |
| 112 | + "source": [ |
| 113 | + "## Defining the objective function" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "metadata": {}, |
| 119 | + "source": [ |
| 120 | + "### Workflow #1\n", |
| 121 | + "\n", |
| 122 | + "Similar to the oracle compiler: take a Python function and synthesize the circuit automatically." |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "def classical_f(x):\n", |
| 132 | + " if x > 1:\n", |
| 133 | + " return x ** 2\n", |
| 134 | + " return x\n", |
| 135 | + "\n", |
| 136 | + "\n", |
| 137 | + "from qiskit.circuit.library import AmplitudeFunction\n", |
| 138 | + "f = AmplitudeFunction(classical_f, domain=(0, 2)) # domain must be the same as the bounds of the probability dist\n", |
| 139 | + "post_processing = f.post_processing # c + (d - c) zeta" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "### Workflow #2\n", |
| 147 | + "\n", |
| 148 | + "Similar to the `UnivariatePiecewiseLinearObjective`, specify the function and construct the circuit from this information. Includes rescalings." |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": null, |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "from qiskit.circuit.library import LinearAmplitudeFunction\n", |
| 158 | + "f = LinearAmplitudeFunction(num_state_qubits=3, \n", |
| 159 | + " slope=[-1, 1],\n", |
| 160 | + " offset=[1, 0],\n", |
| 161 | + " breakpoints=[0, 1],\n", |
| 162 | + " domain=(0, 2))" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "markdown", |
| 167 | + "metadata": {}, |
| 168 | + "source": [ |
| 169 | + "### Workflow #3\n", |
| 170 | + "\n", |
| 171 | + "Manual." |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "code", |
| 176 | + "execution_count": null, |
| 177 | + "metadata": {}, |
| 178 | + "outputs": [], |
| 179 | + "source": [ |
| 180 | + "from qiskit.circuit.library import PiecewiseLinearPauliRotations\n", |
| 181 | + "\n", |
| 182 | + "slopes = np.array([-1, 1])\n", |
| 183 | + "offsets = np.array([1, 0])\n", |
| 184 | + "breakpoints = np.array([0, 1])\n", |
| 185 | + "domain = (0, 2)\n", |
| 186 | + "num_state_qubits = 3\n", |
| 187 | + "N = 2 ** num_state_qubits\n", |
| 188 | + "\n", |
| 189 | + "# apply rescaling to the right domain \n", |
| 190 | + "phi_inv = lambda x: (x - domain[0]) / (domain[1] - domain[0]) * N\n", |
| 191 | + "breakpoints = phi_inv(breakpoints)\n", |
| 192 | + "slopes = (domain[1] - domain[0]) / (N - 1) * slopes\n", |
| 193 | + "# offsets remain the same\n", |
| 194 | + "\n", |
| 195 | + "# apply normalization of the image space\n", |
| 196 | + "offsets = (offsets - fmin) / (fmax - fmin)\n", |
| 197 | + "slopes = slopes / (fmax - fmin)\n", |
| 198 | + "\n", |
| 199 | + "# apply taylor \n", |
| 200 | + "offsets *= c * np.pi / 2\n", |
| 201 | + "slopes *= c * np.pi / 2\n", |
| 202 | + "\n", |
| 203 | + "f = PiecewiseLinearPauliRotations(num_state_qubits, \n", |
| 204 | + " breakpoints=breakpoints,\n", |
| 205 | + " slopes=2 * slopes, \n", |
| 206 | + " offsets=2 * offsets) " |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "markdown", |
| 211 | + "metadata": {}, |
| 212 | + "source": [ |
| 213 | + "### Conclusion\n", |
| 214 | + "\n", |
| 215 | + "Option #2 makes sense for now. This means porting most of the `UnivariatePiecewiseLinearObjective` to the circuit library." |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "markdown", |
| 220 | + "metadata": {}, |
| 221 | + "source": [ |
| 222 | + "## Defining the A operator\n", |
| 223 | + "\n", |
| 224 | + "### Workflow #1\n", |
| 225 | + "\n", |
| 226 | + "Stack together the function circuit and probability distribution circuit." |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": null, |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [], |
| 234 | + "source": [ |
| 235 | + "from qiskit.circuit import QuantumCircuit\n", |
| 236 | + "\n", |
| 237 | + "A = QuantumCircuit(f.num_qubits)\n", |
| 238 | + "A.compose(X, inplace=True)\n", |
| 239 | + "A.compose(f, inplace=True)" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "markdown", |
| 244 | + "metadata": {}, |
| 245 | + "source": [ |
| 246 | + "### Workflow #2\n", |
| 247 | + "\n", |
| 248 | + "Can introduce a class for that but I don't really think the work it does justifies a class, see rather the section about encapsulating the entire workflow." |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": null, |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [], |
| 256 | + "source": [ |
| 257 | + "from qiskit.circuit.library import EstimationProblem # or aqua algorithms\n", |
| 258 | + "\n", |
| 259 | + "A = EstimationProblem(f, X) # but here f is not the circuit but a function! and we do all the synthesisa" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "markdown", |
| 264 | + "metadata": {}, |
| 265 | + "source": [ |
| 266 | + "## Run QAE\n", |
| 267 | + "\n", |
| 268 | + "QAE in the basic form takes the $\\mathcal{A}$ operator and a post processing function." |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": null, |
| 274 | + "metadata": {}, |
| 275 | + "outputs": [], |
| 276 | + "source": [ |
| 277 | + "from qiskit import Aer\n", |
| 278 | + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", |
| 279 | + "\n", |
| 280 | + "ae = AmplitudeEstimation(num_eval_qubits=4, state_in=A, post_processing=f.post_processing)\n", |
| 281 | + "result = ae.run(Aer.get_backend('qasm_simulator'))" |
| 282 | + ] |
| 283 | + }, |
| 284 | + { |
| 285 | + "cell_type": "markdown", |
| 286 | + "metadata": {}, |
| 287 | + "source": [ |
| 288 | + "## Encapsulating the workflow\n", |
| 289 | + "\n", |
| 290 | + "Add a class that is fully equivalent to `UnivariatePiecewiseLineaObjective`? Essentially this means accepting the probabilit" |
| 291 | + ] |
| 292 | + } |
| 293 | + ], |
| 294 | + "metadata": { |
| 295 | + "kernelspec": { |
| 296 | + "display_name": "Python 3.7.7 64-bit ('py377': conda)", |
| 297 | + "language": "python", |
| 298 | + "name": "python37764bitpy377condada92b85e600c45a79ff7c5f35e6f13ab" |
| 299 | + }, |
| 300 | + "language_info": { |
| 301 | + "codemirror_mode": { |
| 302 | + "name": "ipython", |
| 303 | + "version": 3 |
| 304 | + }, |
| 305 | + "file_extension": ".py", |
| 306 | + "mimetype": "text/x-python", |
| 307 | + "name": "python", |
| 308 | + "nbconvert_exporter": "python", |
| 309 | + "pygments_lexer": "ipython3", |
| 310 | + "version": "3.7.7" |
| 311 | + } |
| 312 | + }, |
| 313 | + "nbformat": 4, |
| 314 | + "nbformat_minor": 4 |
| 315 | +} |
0 commit comments