#RColumbo
Installing RColumbo (without root privelages) (on RCC)
module load cmake
module load R
Add this line to the end of ~/.bash_profile
:
export LD_LIBRARY_PATH=$HOME/lib:$LD_LIBRARY_PATH
then run
source ~/.bash_profile
The HDF5 module on RCC does not support C++
wget https://www.hdfgroup.org/ftp/HDF5/releases/hdf5-1.10/hdf5-1.10.0-patch1/src/hdf5-1.10.0-patch1.tar.gz
tar -xzf hdf5-1.10.0-patch1.tar.gz
cd hdf5-1.10.0-patch1
./configure --prefix=$HOME --enable-cxx --enable-build-mode=production
make install
git clone https://github.com/Blosc/c-blosc
cd c-blosc
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$HOME ..
make
make install
from within R
#Install devools if necessary
install.packages(devtools)
library(devtools)
#Install rhdf5 if necessary
source("https://bioconductor.org/biocLite.R")
biocLite("rhdf5")
devtools::install_github("CreRecombinase/h5")
devtools::install_github("CreRecombinase/RColumbo",ref="release")
library(RColumbo)
The eQTL results are stored as dataframes in HDF5 (.h5) files. There is one file for each chromosome. Each h5 file
has a cis_eQTL
dataframe and a trans_eQTL
dataframe. The dataframes can be read using RColumbo
's read_h5_df
function:
library(RColumbo)
eqtl_file <- "/project/xinhe/eQTL/WB_Chr2_v6p_ortho_flip.h5"
cis_eqtl_df <- read_h5_df(eqtl_file,groupname="cis_eQTL")
trans_eqtl_df <- read_h5_df(eqtl_file,groupname="trans_eQTL")
The columns of these dataframes are as follows
chrom
: chromosomefgeneid
: a gene identifier (it's a basically the ensembl gene ID)pos
: chromosome coordinate as given by GTExtheta
:estimated eQTL regression coefficient (no intercept)serr
: standard error of eQTL regression coefficient