-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathrun_tf.py
95 lines (76 loc) · 3.3 KB
/
run_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# BSD 2-Clause License
#
# Copyright (c) 2021-2024, Hewlett Packard Enterprise
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import numpy as np
from smartredis import Client
from tensorflow import keras
from smartsim.ml.tf import freeze_model, serialize_model
def create_tf_mnist_model():
model = keras.Sequential(
layers=[
keras.layers.InputLayer(input_shape=(28, 28), name="input"),
keras.layers.Flatten(input_shape=(28, 28), name="flatten"),
keras.layers.Dense(128, activation="relu", name="dense"),
keras.layers.Dense(10, activation="softmax", name="output"),
],
name="FCN",
)
# Compile model with optimizer
model.compile(
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
return model
def run(device):
model = create_tf_mnist_model()
client = Client(cluster=False)
model_path, inputs, outputs = freeze_model(model, os.getcwd(), "mnist.pb")
mnist_image = np.random.rand(1, 28, 28).astype(np.float32)
client.put_tensor("mnist_input", mnist_image)
model_key = "tf_mnist"
client.set_model_from_file(
model_key, model_path, "TF", device=device, inputs=inputs, outputs=outputs
)
client.run_model(model_key, "mnist_input", "mnist_output")
pred = client.get_tensor("mnist_output")
print(pred)
assert len(pred[0]) == 10
serialized_model, inputs, outputs = serialize_model(model)
model_key = "tf_mnist_serialized"
client.set_model(
model_key, serialized_model, "TF", device=device, inputs=inputs, outputs=outputs
)
client.run_model(model_key, "mnist_input", "mnist_output_serialized")
pred = client.get_tensor("mnist_output_serialized")
print(pred)
assert len(pred[0]) == 10
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Keras test Script")
parser.add_argument(
"--device", type=str, default="CPU", help="device type for model execution"
)
args = parser.parse_args()
run(args.device)