|
4 | 4 |
|
5 | 5 | LWE problem(Learning With Error)
|
6 | 6 |
|
7 |
| -## Scheme Description |
| 7 | +## Scheme Brief Description |
8 | 8 |
|
9 |
| -plaintext: $m \in \{0, 1\}$ |
| 9 | +Plaintext: $ m \in \{0, 1\}$ |
10 | 10 |
|
11 |
| -## Re-linearization technique |
| 11 | +Secret key: $\textbf{s} \in \mathbb{Z}_q^n$ |
12 | 12 |
|
13 |
| -Aim: Reduce the size of the ciphertext back down to n+1 |
| 13 | +Random vector: $\textbf{a} \in \mathbb{Z}_q^n$ |
| 14 | + |
| 15 | +Ciphertext: $c =(\textbf{a},b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ |
| 16 | + |
| 17 | +Encryption function: $b=\langle\textbf{a},\textbf{s}\rangle+2e+m \in \mathbb{Z}_q$ |
| 18 | + |
| 19 | +Decryption fuction: $f_{\textbf{a},b}(\textbf{x})=b-\langle{\textbf{a},\textbf{x}}\rangle (mod\ q)=b-\sum_{i=1}^n{\textbf{a}[i]\cdot\textbf{x}[i]} \in \mathbb{Z}_q$ |
| 20 | + |
| 21 | +## Homomorphic addition |
| 22 | + |
| 23 | +$$ |
| 24 | +f_{\textbf{a}+\textbf{a}^{'},b+b^{'}}(\textbf{x})=b+b^{'}-\langle{\textbf{a}+\textbf{a}^{'},\textbf{x}}\rangle (mod\ q)=f_{\textbf{a},b}(\textbf{x})+f_{\textbf{a}^{'},b^{'}}(\textbf{x}) |
| 25 | +$$ |
| 26 | + |
| 27 | +The homomorphic addition can be computed directly. |
| 28 | + |
| 29 | +## Homomorphic multiplication |
| 30 | + |
| 31 | +$$ |
| 32 | +f_{\textbf{a},b}(\textbf{x})\cdot f_{\textbf{a}^{'},b^{'}}(\textbf{x}) = \left(b-\sum{\textbf{a}[i]\textbf{x}[i]}\right)\cdot \left(b^{'}-\sum{\textbf{a}^{'}[i]\textbf{x}[i]}\right)\\ = h_0+\sum{h_i\cdot \textbf{x}[i]}+\sum{h_{i,j}\cdot \textbf{x}[i]\textbf{x}[j]} |
| 33 | +$$ |
| 34 | + |
| 35 | +The decryption algorithm has to know all the coefficients of this quadratic polynomial, which means that the size of the ciphertext just went up from $n+1$ elements to (roughly) $n^2/2$ |
| 36 | + |
| 37 | +### Re-linearization technique |
| 38 | + |
| 39 | +Aim: Reduce the size of the ciphertext back down to $n+1$ |
| 40 | + |
| 41 | +Idea: Imagine that we publish “encryptions” of all the linear and quadratic terms in the secret key $s$, namely all the numbers $s[i]$ as well as $s[i]s[j]$, under a new secret key $t$. |
| 42 | + |
| 43 | +New ciphertexts: |
| 44 | + |
| 45 | +$b_{i}=\langle\textbf{a}_{i},\textbf{t}\rangle + 2e_{i} + s[i] \approx \langle\textbf{a}_{i},\textbf{t}\rangle + s[i] \in \mathbb{Z}_q$ |
| 46 | + |
| 47 | +$b_{i,j}=\langle\textbf{a}_{i,j},\textbf{t}\rangle + 2e_{i,j} + s[i]s[j] \approx \langle\textbf{a}_{i,j},\textbf{t}\rangle + s[i]s[j] \in \mathbb{Z}_q$ |
| 48 | + |
| 49 | +Now, the sum $h_0+\sum{h_i\cdot \textbf{x}[i]}+\sum{h_{i,j}\cdot \textbf{x}[i]\textbf{x}[j]}$ can be written (approximately) as |
| 50 | + |
| 51 | +$h_0+\sum_i{h_i\cdot (b_i - \langle{\textbf{a}_i},\textbf{t}\rangle)}+\sum_{i,j}{h_{i,j}\cdot (b_{i,j}-\langle{\textbf{a}_{i,j},\textbf{t}}\rangle)}$ |
| 52 | + |
| 53 | +which is a linear function of $t$ after simplification. |
| 54 | + |
| 55 | +A “chain” of L secret keys (together with encryptions of quadratic terms of one secret key using the next secret key) allows us to perform up to L levels of multiplications without blowing up the ciphertext size. |
| 56 | + |
| 57 | +#### Flatten(described in the [GSW13](GSW13.md)) |
| 58 | + |
| 59 | +Consider the binary representation of $h_{i,j}$, namely $h_{i,j} = \sum_{\tau=0}^{\lfloor{log\ q}\rfloor}h_{i,j,\tau}2^{\tau} \textbf{s}[i]\cdot \textbf{s}[j]$ |
| 60 | + |
| 61 | +For each value of $\tau$, we have a pair $(\textbf{a}_{i,j,\tau},b_{i,j,\tau})$ such that |
| 62 | + |
| 63 | +$b_{i,j,\tau} = \langle{\textbf{a}_{i,j,\tau}, \textbf{t}}\rangle + 2e_{i,j,\tau} + 2^{\tau}\textbf{s}[i]\cdot \textbf{s}[j] \approx\langle{\textbf{a}_{i,j,\tau}, \textbf{t}}\rangle + 2^{\tau}\textbf{s}[i]\cdot \textbf{s}[j] $ |
| 64 | + |
| 65 | +then $h_{i,j}\cdot \textbf{s}[i]\textbf{s}[j] = \sum_{\tau=0}^{\lfloor{log\ q}\rfloor}2^{\tau}\textbf{s}[i]\cdot \textbf{s}[j] \approx h_{i,j,\tau}(b_{i,j,\tau} - \langle \textbf{a}_{i,j,\tau}, \textbf{t} \rangle)$ |
| 66 | + |
| 67 | +### Dimension-Modulus Reduction |
| 68 | + |
| 69 | +Aim: Taking a ciphertext with parameters $(n,log\ q)$ as above, and convert it into a ciphertext of the same message, but with parameters $(k,log\ p)$ which are much smaller than $(n,log\ q)$. |
14 | 70 |
|
0 commit comments