|
| 1 | +import onnxruntime |
| 2 | +import numpy as np |
| 3 | +import cv2 |
| 4 | +import json |
| 5 | +import os |
| 6 | +import time |
| 7 | + |
| 8 | +providers = ['CPUExecutionProvider'] |
| 9 | +session = onnxruntime.InferenceSession('resnet18v1/resnet18v1.onnx', providers=providers) |
| 10 | +input_name = session.get_inputs()[0].name |
| 11 | +output_name = session.get_outputs()[0].name |
| 12 | + |
| 13 | +def load_labels(path): |
| 14 | + with open(path) as f: |
| 15 | + data = json.load(f) |
| 16 | + return np.asarray(data) |
| 17 | + |
| 18 | +def softmax(x): |
| 19 | + x = x.reshape(-1) |
| 20 | + e_x = np.exp(x - np.max(x)) |
| 21 | + return e_x / e_x.sum(axis=0) |
| 22 | + |
| 23 | +labels = load_labels('labels.json') |
| 24 | + |
| 25 | +path = '/home/remloveh/.mxnet/datasets/imagenet/val/' |
| 26 | +li = os.listdir(path) |
| 27 | +li.sort() |
| 28 | + |
| 29 | +total = 0 |
| 30 | +right = 0 |
| 31 | +label_num = 0 |
| 32 | +start = time.time() |
| 33 | +for di in li: |
| 34 | + ll = os.listdir(path + di) |
| 35 | + for dd in ll: |
| 36 | + img = cv2.imread(path + di + '/' + dd) |
| 37 | + img = cv2.resize(img, (224, 224)) |
| 38 | + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
| 39 | + |
| 40 | + data = np.array(img).transpose(2, 0, 1) |
| 41 | + data = data.astype('float32') |
| 42 | + mean_vec = np.array([0.485, 0.456, 0.406]) |
| 43 | + stddev_vec = np.array([0.229, 0.224, 0.225]) |
| 44 | + norm_data = np.zeros(data.shape).astype('float32') |
| 45 | + |
| 46 | + for i in range(data.shape[0]): |
| 47 | + norm_data[i,:,:] = (data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i] |
| 48 | + norm_data = norm_data.reshape(1, 3, 224, 224).astype('float32') |
| 49 | + |
| 50 | + result = session.run([output_name],{input_name:norm_data}) |
| 51 | + res = softmax(np.array(result)).tolist() |
| 52 | + idx = np.argmax(res) |
| 53 | + |
| 54 | + if idx == label_num: |
| 55 | + right = right + 1 |
| 56 | + total = total + 1 |
| 57 | + label_num = label_num + 1 |
| 58 | +end = time.time() |
| 59 | + |
| 60 | +print('time: ', int(end - start)/ total, 's') |
| 61 | + |
| 62 | + |
| 63 | +print('accuracy: ', right/total) |
0 commit comments