-
Notifications
You must be signed in to change notification settings - Fork 1
/
quantum hw1.tex
242 lines (212 loc) · 11.2 KB
/
quantum hw1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
\documentclass{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{textcomp, gensymb}
\usepackage[dvipsnames]{xcolor}
\usepackage[margin=0.5in]{geometry}
\usepackage[hidelinks]{hyperref}
\usepackage{environ}
\NewEnviron{centerframebox}{\begin{center}\fbox{\parbox{0.92\textwidth}{\BODY}}\end{center}}
\usepackage{tasks}
\usepackage{wrapfig}
\usepackage{tikz}
\usetikzlibrary{patterns}
\pgfdeclarepatternformonly{south east lines}{\pgfqpoint{-0pt}{-0pt}}{\pgfqpoint{3pt}{3pt}}{\pgfqpoint{3pt}{3pt}}{
\pgfsetlinewidth{0.4pt}
\pgfpathmoveto{\pgfqpoint{0pt}{3pt}}
\pgfpathlineto{\pgfqpoint{3pt}{0pt}}
\pgfpathmoveto{\pgfqpoint{.2pt}{-.2pt}}
\pgfpathlineto{\pgfqpoint{-.2pt}{.2pt}}
\pgfpathmoveto{\pgfqpoint{3.2pt}{2.8pt}}
\pgfpathlineto{\pgfqpoint{2.8pt}{3.2pt}}
\pgfusepath{stroke}}
\let\oldphi\phi
\let\phi\varphi
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\title{Quantum Algorithms \\ Exercise 1}
\author{
\AA{Konstantin Borisov}{6} \\ \href{mailto:\AA{s66kbori@uni-bonn.de}{7}}{\AA{s66kbori@uni-bonn.de}{7}} \and
Chuong Dinh Le \\ \href{mailto:s56dle@uni-bonn.de}{s56dle@uni-bonn.de} \and
Paul Berners \\ \href{mailto:s6plbern@uni-bonn.de}{s6plbern@uni-bonn.de} \and
Fynn Osterfeld \\ \href{mailto:s6fyoste@uni-bonn.de}{s6fyoste@uni-bonn.de}
}
\begin{document}
\maketitle
\setcounter{section}{1}
\subsection{Complex Numbers}
\subsubsection*{(A) Euler's formula}
\begin{centerframebox}
Calculate the complex number given by $re^{i\phi}$ for $r = 1$ and:
\begin{tasks}[style=itemize](4)
\task $\phi = 0$
\task $\phi = \frac{\pi}{2}$
\task $\phi = \pi$
\task $\phi = \frac{3\pi}{2}$
\end{tasks}
\end{centerframebox}
\begin{wrapfigure}{r}{4cm}
\vspace{-.5cm}
\centering
\begin{tikzpicture}[x=.5cm,y=.5cm]
\draw[step=1, gray, very thin] (-3,-3) grid (3,3);
\draw[-stealth] (-3,0)--(3,0) node[right]{Re}; % x axis
\draw[-stealth] (0,-3)--(0,3) node[above]{Im}; % y axis
\draw[pattern=south east lines, pattern color=BrickRed] (0,0) circle[radius=2];
\draw[->,>=stealth,thick] (2,0) arc[radius=2, start angle=0, end angle=120];
\node (a) at (-1,2.2) {$\hspace{-.5cm}e^{i\phi}$};
\fill (-1,1.73) circle[radius=2pt];
\fill[fill=ForestGreen] (0,2) circle[radius=2pt];
\fill[fill=ForestGreen] (2,0) circle[radius=2pt];
\fill[fill=ForestGreen] (0,-2) circle[radius=2pt];
\fill[fill=ForestGreen] (-2,0) circle[radius=2pt];
\end{tikzpicture}
\end{wrapfigure}
The expression we need to calculate is actually Euler's Formula.
It allows us to write any complex number in terms of its magnitude and its angle with the real axis.
The values of $\phi$ we were given correspond directly to multiples of $90\degree = \frac{\pi}{2}$.
The value of $r$ is $1$ so we don't have to change the magnitude of the resulting complex number,
and it will just stay on the unit circle.
From trigonometry we get the formula $e^{i\phi} = \cos \phi + i\sin \phi$,
but in our particular case the angles are so simple, that we only get values of $\pm 1$ and $0$.
So for our values of get: \\
\begin{tabular}{lllllll}
\textbullet $\quad\phi = 0$ & $\qquad\to\qquad$ & $re^{i\phi} = 1$ & $\qquad\qquad$ &
\textbullet $\quad\phi = \frac{\pi}{2}$ & $\qquad\to\qquad$ & $re^{i\phi} = i$ \\
\textbullet $\quad\phi = \pi$ & $\qquad\to\qquad$ & $re^{i\phi} = -1$ & $\qquad\qquad$ &
\textbullet $\quad\phi = \frac{3\pi}{2}$ & $\qquad\to\qquad$ & $re^{i\phi} = -i$ \\
\end{tabular}
\subsubsection*{(B) Wave function}
\begin{centerframebox}
A wave function $\psi(x)$ for some state $x_0$ is given by $\psi(x_0) = \frac{1}{2} + \frac{1}{2}i$.
\begin{itemize}
\item What is the probability density $p(x_0)$?
\item Calculate the factor $\gamma$ such that $\gamma\psi(x_0) = -\frac{1}{2}$.
\end{itemize}
\end{centerframebox}
The probability density of a wave function is generally given by its square magnitude.
Because we know the value of $\psi(x_0)$, we can just square it by hand.
\begin{align*}
p(x_0) &= |\psi(x_0)^2| \\
&= \left|\left(\frac{1}{2} + \frac{1}{2}i\right)^2\right| \\
&= \left|\left(\frac{1}{2} + \frac{1}{2}i\right) \cdot \left(\frac{1}{2} + \frac{1}{2}i\right)\right| \\
&= \left|\frac{1}{2}\frac{1}{2} + \frac{1}{2}\frac{1}{2}i + \frac{1}{2}\frac{1}{2}i + \frac{1}{2}\frac{1}{2}i^2\right| \\
&= \left|\frac{1}{4} + \frac{1}{2}i - \frac{1}{4}\right| \\
&= \left|\frac{1}{2}i\right| \\
&= \frac{1}{2} \\
\end{align*}
The probability turned out to be $0.5$!
Now to calculate the factor $\gamma$, we just need to solve the equation $\gamma\psi(x_0) = -\frac{1}{2}$ with some simple algebra.
We just need to divide both sides by $\psi(x_0)$, because it's just a complex number we know.
\begin{align*}
\gamma &= -\frac{1}{2} \cdot \psi(x_0)^{-1} \\
&= -\frac{1}{2} \cdot \frac{\bar\psi(x_0)}{|\psi(x_0)|^2} \\
&= -\frac{1}{2} \cdot \frac{\frac{1}{2} - \frac{1}{2}i}{\frac{1}{2}} \\
&= -\frac{2}{2} \cdot \left(\frac{1}{2} - \frac{1}{2}i\right) \\
&= -\frac{1}{2} + \frac{1}{2}i \\
\end{align*}
So $\gamma = -\frac{1}{2} + \frac{1}{2}i$, and we can even verify it work by multiplying it again.
\subsection{Schrödinger Equation}
\subsubsection*{(A) Derivation}
\begin{centerframebox}
Derive the time-independent Schrödinger equation from the time-dependant by using the time independent Hamiltonian.
\begin{tasks}[style=itemize](2)
\task Time-dependant Schrödinger equation \\
\begin{center} $\displaystyle i\hbar \frac{\partial \Psi(x,t)}{\partial t} = \hat{H} \Psi(x,t) $ \end{center}
\task Time-independent Schrödinger equation \\
\begin{center} $\displaystyle \hat{H} \psi(x) = E \psi(x) $ \end{center}
\end{tasks}
\end{centerframebox}
First, because we are working in the time-independent case, we can assume that the wave function $\Psi(x,t)$
can be separated into a space dependant and a time dependant component $\Psi(x,t) = \psi(x) u(t)$.
Substituting this into the time-dependant Schrödinger equation:
\begin{align*}
i\hbar \frac{\partial \psi(x) u(t)}{\partial t} &= \hat{H} \psi(x) u(t) \\
i\hbar \left( \psi(x)\frac{\partial u(t)}{\partial t} + u(t)\frac{\partial \psi(x)}{\partial t} \right) &= \\
i\hbar \left( \psi(x)\frac{\partial u(t)}{\partial t} + u(t) \cdot 0 \right) &= \\
i\hbar \psi(x)\frac{\partial u(t)}{\partial t} &= \hat{H} \psi(x) u(t) \\
i\hbar \frac{\partial u(t)}{\partial t} &= \hat{H} u(t) \\
\end{align*}
If we assume $u(t)$ only contains a complex phase component $u(t) = e^{-\frac{i}{\hbar}Et}$,
where $E$ is just some scaling constant (for now),
and substitute it into the differential equation we got from the last line, we get:
\begin{align*}
i\hbar \frac{\partial u(t)}{\partial t} &= \hat{H} u(t) \\
i\hbar \cdot \left( {-\frac{i}{\hbar}E} \right) u(t) &= \hat{H} u(t) \\
E u(t) &= \hat{H} u(t)
\end{align*}
We can conclude that $E$ must be the energy eigenvalue and $u(t) = e^{-\frac{i}{\hbar}Et}$.
Now we substitute this into the original equation we had, before we removed $\psi(x)$.
\begin{align*}
i\hbar \psi(x)\frac{\partial u(t)}{\partial t} &= \hat{H} \psi(x) u(t) \\
\psi(x) E u(t) &= \hat{H} \psi(x) u(t) \\
E\psi(x) &= \hat{H} \psi(x) \\
\end{align*}
This is the time-independent Schrödinger equation, and we're done.
$\blacksquare$
\subsubsection*{(B) Linearity}
\begin{centerframebox}
Let be $\Psi,\, \Phi$ solutions of the Schrödinger equation.
Show that the Schrödinger equation is linear, i.e. $\alpha\Psi + \beta\Phi$ are also solutions for $\alpha,\, \beta \in \C$.
\end{centerframebox}
Since the partial derivation operation $\partial$ is linear, this becomes very clear:
\begin{align*}
i\hbar \frac{\partial\left(\alpha\Psi + \beta\Phi\right)(x, t)}{\partial t} &= i\hbar \frac{\alpha\partial\Psi(x, t)+\beta\partial\Phi(x, t)}{\partial t}\\
&= i\hbar \frac{\alpha\partial\Psi(x, t)}{\partial t} + i\hbar \frac{\beta\partial\Phi(x, t)}{\partial t}\\
&= \alpha \left(i\hbar \frac{\partial\Psi(x, t)}{\partial t}\right) + \beta \left(i\hbar \frac{\partial\Phi(x, t)}{\partial t}\right)\\
&= \alpha \hat{H}\Psi(x, t) + \beta \hat{H}\Phi(x, t)\\
&= \hat{H}(\alpha\Psi + \beta\Phi)(x, t)
\end{align*}
\subsection{The Free Particle}
\begin{centerframebox}
The free particle moves with some given kinematic energy without being exposed to any potential
($V = 0$). As a consequence, the Hamiltonian is given by
\[ \hat{H}(x) = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} \]
\begin{itemize}
\item Show that the following wave function $\Psi$ is a solution to the Schrödinger equation:
\[ \Psi(x,\, t) = \exp\left(\frac{i}{\hbar} (px-Et)\right) \]
\item The momentum operator is given by $\hat{p} = -i\hbar\dfrac{\partial}{\partial x}$. Show that $\hat{p}\Psi = p\Psi$.
\item The energy operator is given by $\hat{E} = i\hbar\dfrac{\partial}{\partial t}$. Show that $\hat{E}\Psi = E\Psi$.
\end{itemize}
\end{centerframebox}
\begin{itemize}
\item[] We have
$e^{\frac{i}{\hbar}(px-Et)} = e^{i(\frac{p}{\hbar}x-\frac{E}{\hbar}t)} \Rightarrow E = \frac{\hbar^2k^2}{2m} = \frac{\hbar^2\frac{p}{\hbar}^2}{2m} = \frac{p^2}{2m}$ (1)
\item[] Substitute $\psi(x)$ to Schroedinger equation:
\begin{align*}
&-\frac{\hbar^2}{2m}\frac{\partial^2 \psi(x)}{\partial^2 x} = E\psi(x)\\
&\Leftrightarrow -\frac{\hbar^2}{2m}(\frac{ip}{\hbar})^2\psi(x) = E\psi(x)\\
&\Leftrightarrow \frac{p^2}{2m}\psi(x) = E\psi(x) \label{eq}
\end{align*}
\item[] By substitute $E$ from (1), the equation holds true. Hence, the given $\psi(x)$ is a solution to the Schroedinger equation.
\end{itemize}
So calculate both sides of the Schrödinger equation:
\begin{align*}
i\hbar\frac{\partial\Psi(x, t)}{\partial t} &= i\hbar\left(-\frac{i}{\hbar}E\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\right)\\
&= E\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= E\Psi(x, t)
\end{align*}
\begin{align*}
\hat{H}\Psi(x, t) &= \frac{\hbar^2}{2m}\frac{\partial}{\partial x^2}\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= \frac{\hbar^2}{2m}\frac{i^2}{\hbar^2}p^2\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= -\frac{p^2}{2m}\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= -\frac{p^2}{2m}\Psi(x, t)
\end{align*}
Then $E = -\frac{p^2}{2m}$ is equivalent to $\Psi$ being a solution of the Schrödinger equation.\\\\
To show $\hat{p}\Psi = p\Psi$ just calculate $\hat{p}\Psi$:
\begin{align*}
\hat{p}\Psi(x, t) &= -i\hbar\frac{\partial}{\partial x}\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= -i\hbar\frac{i}{\hbar}p\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= p\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= p\Psi(x, t)
\end{align*}
To show $\hat{E}\Psi = E\Psi$ just calculate $\hat{E}\Psi$:
\begin{align*}
\hat{E}\Psi(x, t) &= i\hbar\frac{\partial}{\partial t}\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= i\hbar\frac{i}{\hbar}(-E)\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= E\exp{\left(\frac{i}{\hbar}(px-Et)\right)}\\
&= E\Psi(x, t)
\end{align*}
\end{document}