This repository contains the Starlng R package, which identifies stable clusters of coexpressed genes and describes their position along the pseudotime trajectory. The package builds on top of the Monocle3 [1] and ClustAssess [2] frameworks.
A live example of the Starlng Shiny app can be found here.
or from Github using the remotes package:
remotes::install_github("Core-Bioinformatics/Starlng").
The following packages are required for Starlng:
- circlize
- ClustAssess
- ComplexHeatmap
- dplyr
- DT
- foreach
- ggplot2
- Gmedian
- gprofiler2
- HDF5Array
- igraph
- leidenbase
- Matrix (>= 1.5.0)
- methods
- monocle3
- patchwork
- qs
- qs2
- qualpalr
- RANN
- rclipboard
- reshape2
- RhpcBLASctl
- rhdf5
- shiny
- shinyjs
- shinyWidgets
- spsComps
- tidyr
- stringr
- viridis
We suggest installing the following packages for optimal performance:
- doFuture
- doParallel
- irlba
- testthat (>= 3.0.0)
- parallel
- plotly
- SharedObject
To be added.
[1] J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang, S. Mundlos, L. Christiansen, F. J. Steemers, C. Trapnell, and J. Shendure, “The single-cell transcriptional landscape of mammalian organogenesis,” Nature, vol. 566, p. 496–502, Feb. 2019.
[2] A. Shahsavari, A. Munteanu, and I. Mohorianu, “Clustassess: tools for assessing the robustness of single-cell clustering,” bioRxiv, 2022.