a peptide-specific MCP predictor using GraphSAGE
- python == 3.12
- pytorch == 2.7
- esm
- transformers
- pytorch
- transformers
- dgl
- sklearn (for training evaluation)
Test sequences and names are in ./data/test.csv
python ESMC_extract.py # ESMC environment
python predict.py # PepMCP environment(This step can be skipped for using 5-fold datasets in ./data/res_split or ./data/seq_split directly)
python preprocess.py
python ESMC_extract.py # change file name to MemAMPs.csv or pdb_sol_neg.txt, under ESMC environmentpython train.pyR. Dong, T. Awang, Q. Cao, K. Kang, L. Wang, Z. Zhu, and C. Song. A Graph-Based Membrane Contact Probability Predictor for Membrane-Lytic Antimicrobial Peptides, 2026.
