Skip to content

a graph-based peptide-tailored MCP predictor

Notifications You must be signed in to change notification settings

ComputBiophys/PepMCP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PepMCP

a peptide-specific MCP predictor using GraphSAGE

PepMCP server

image

Requirements

ESMC environment

  • python == 3.12
  • pytorch == 2.7
  • esm
  • transformers

PepMCP environment

  • pytorch
  • transformers
  • dgl
  • sklearn (for training evaluation)

Usage

Prediction

Test sequences and names are in ./data/test.csv

python ESMC_extract.py  # ESMC environment
python predict.py       # PepMCP environment

Training

Data processing

(This step can be skipped for using 5-fold datasets in ./data/res_split or ./data/seq_split directly)

python preprocess.py
python ESMC_extract.py   # change file name to MemAMPs.csv or pdb_sol_neg.txt, under ESMC environment

Run

python train.py

Citation

R. Dong, T. Awang, Q. Cao, K. Kang, L. Wang, Z. Zhu, and C. Song. A Graph-Based Membrane Contact Probability Predictor for Membrane-Lytic Antimicrobial Peptides, 2026.

About

a graph-based peptide-tailored MCP predictor

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%