forked from thangvubk/SoftGroup
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_s3dis.py
328 lines (291 loc) · 14 KB
/
eval_s3dis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Modified from ScanNet evaluation script: https://github.com/ScanNet/ScanNet/blob/master/BenchmarkScripts/3d_evaluation/evaluate_semantic_instance.py
import os, sys, numpy as np
import util.utils_3d as util_3d
import util.utils as util
# ---------- Label info ---------- #
CLASS_LABELS = [
"ceiling",
"floor",
"wall",
"beam",
"column",
"window",
"door",
"chair",
"table",
"bookcase",
"sofa",
"board",
"clutter"
]
VALID_CLASS_IDS = np.arange(13) + 1
ID_TO_LABEL = {}
LABEL_TO_ID = {}
for i in range(len(VALID_CLASS_IDS)):
LABEL_TO_ID[CLASS_LABELS[i]] = VALID_CLASS_IDS[i]
ID_TO_LABEL[VALID_CLASS_IDS[i]] = CLASS_LABELS[i]
# ---------- Evaluation params ---------- #
# overlaps for evaluation
OVERLAPS = np.append(np.arange(0.5,0.95,0.05), 0.25)
# minimum region size for evaluation [verts]
MIN_REGION_SIZES = np.array( [ 100 ] )
# distance thresholds [m]
DISTANCE_THRESHES = np.array( [ float('inf') ] )
# distance confidences
DISTANCE_CONFS = np.array( [ -float('inf') ] )
def evaluate_matches(matches):
overlaps = OVERLAPS
min_region_sizes = [MIN_REGION_SIZES[0]]
dist_threshes = [DISTANCE_THRESHES[0]]
dist_confs = [DISTANCE_CONFS[0]]
# results: class x overlap
ap = np.zeros((len(dist_threshes), len(CLASS_LABELS), len(overlaps)), np.float)
for di, (min_region_size, distance_thresh, distance_conf) in enumerate(zip(min_region_sizes, dist_threshes, dist_confs)):
for oi, overlap_th in enumerate(overlaps):
pred_visited = {}
for m in matches:
for p in matches[m]['pred']:
for label_name in CLASS_LABELS:
for p in matches[m]['pred'][label_name]:
if 'filename' in p:
pred_visited[p['filename']] = False
for li, label_name in enumerate(CLASS_LABELS):
y_true = np.empty(0)
y_score = np.empty(0)
hard_false_negatives = 0
has_gt = False
has_pred = False
for m in matches:
pred_instances = matches[m]['pred'][label_name]
gt_instances = matches[m]['gt'][label_name]
# filter groups in ground truth
gt_instances = [gt for gt in gt_instances if
gt['instance_id'] >= 1000 and gt['vert_count'] >= min_region_size and gt['med_dist'] <= distance_thresh and gt['dist_conf'] >= distance_conf]
if gt_instances:
has_gt = True
if pred_instances:
has_pred = True
cur_true = np.ones(len(gt_instances))
cur_score = np.ones(len(gt_instances)) * (-float("inf"))
cur_match = np.zeros(len(gt_instances), dtype=np.bool)
# collect matches
for (gti, gt) in enumerate(gt_instances):
found_match = False
num_pred = len(gt['matched_pred'])
for pred in gt['matched_pred']:
# greedy assignments
if pred_visited[pred['filename']]:
continue
overlap = float(pred['intersection']) / (
gt['vert_count'] + pred['vert_count'] - pred['intersection'])
if overlap > overlap_th:
confidence = pred['confidence']
# if already have a prediction for this gt,
# the prediction with the lower score is automatically a false positive
if cur_match[gti]:
max_score = max(cur_score[gti], confidence)
min_score = min(cur_score[gti], confidence)
cur_score[gti] = max_score
# append false positive
cur_true = np.append(cur_true, 0)
cur_score = np.append(cur_score, min_score)
cur_match = np.append(cur_match, True)
# otherwise set score
else:
found_match = True
cur_match[gti] = True
cur_score[gti] = confidence
pred_visited[pred['filename']] = True
if not found_match:
hard_false_negatives += 1
# remove non-matched ground truth instances
cur_true = cur_true[cur_match == True]
cur_score = cur_score[cur_match == True]
# collect non-matched predictions as false positive
for pred in pred_instances:
found_gt = False
for gt in pred['matched_gt']:
overlap = float(gt['intersection']) / (
gt['vert_count'] + pred['vert_count'] - gt['intersection'])
if overlap > overlap_th:
found_gt = True
break
if not found_gt:
num_ignore = pred['void_intersection']
for gt in pred['matched_gt']:
# group?
if gt['instance_id'] < 1000:
num_ignore += gt['intersection']
# small ground truth instances
if gt['vert_count'] < min_region_size or gt['med_dist'] > distance_thresh or gt['dist_conf'] < distance_conf:
num_ignore += gt['intersection']
proportion_ignore = float(num_ignore) / pred['vert_count']
# if not ignored append false positive
if proportion_ignore <= overlap_th:
cur_true = np.append(cur_true, 0)
confidence = pred["confidence"]
cur_score = np.append(cur_score, confidence)
# append to overall results
y_true = np.append(y_true, cur_true)
y_score = np.append(y_score, cur_score)
# compute average precision
if has_gt and has_pred:
# compute precision recall curve first
# sorting and cumsum
score_arg_sort = np.argsort(y_score)
y_score_sorted = y_score[score_arg_sort]
y_true_sorted = y_true[score_arg_sort]
y_true_sorted_cumsum = np.cumsum(y_true_sorted)
# unique thresholds
(thresholds, unique_indices) = np.unique(y_score_sorted, return_index=True)
num_prec_recall = len(unique_indices) + 1
# prepare precision recall
num_examples = len(y_score_sorted)
if(len(y_true_sorted_cumsum) == 0):
num_true_examples = 0
else:
num_true_examples = y_true_sorted_cumsum[-1]
precision = np.zeros(num_prec_recall)
recall = np.zeros(num_prec_recall)
# deal with the first point
y_true_sorted_cumsum = np.append(y_true_sorted_cumsum, 0)
# deal with remaining
for idx_res, idx_scores in enumerate(unique_indices):
cumsum = y_true_sorted_cumsum[idx_scores - 1]
tp = num_true_examples - cumsum
fp = num_examples - idx_scores - tp
fn = cumsum + hard_false_negatives
p = float(tp) / (tp + fp)
r = float(tp) / (tp + fn)
precision[idx_res] = p
recall[idx_res] = r
# first point in curve is artificial
precision[-1] = 1.
recall[-1] = 0.
# compute average of precision-recall curve
recall_for_conv = np.copy(recall)
recall_for_conv = np.append(recall_for_conv[0], recall_for_conv)
recall_for_conv = np.append(recall_for_conv, 0.)
stepWidths = np.convolve(recall_for_conv, [-0.5, 0, 0.5], 'valid')
# integrate is now simply a dot product
ap_current = np.dot(precision, stepWidths)
elif has_gt:
ap_current = 0.0
else:
ap_current = float('nan')
ap[di, li, oi] = ap_current
return ap
def compute_averages(aps):
d_inf = 0
o50 = np.where(np.isclose(OVERLAPS,0.5))
o25 = np.where(np.isclose(OVERLAPS,0.25))
oAllBut25 = np.where(np.logical_not(np.isclose(OVERLAPS,0.25)))
avg_dict = {}
#avg_dict['all_ap'] = np.nanmean(aps[ d_inf,:,: ])
avg_dict['all_ap'] = np.nanmean(aps[ d_inf,:,oAllBut25])
avg_dict['all_ap_50%'] = np.nanmean(aps[ d_inf,:,o50])
avg_dict['all_ap_25%'] = np.nanmean(aps[ d_inf,:,o25])
avg_dict["classes"] = {}
for (li,label_name) in enumerate(CLASS_LABELS):
avg_dict["classes"][label_name] = {}
#avg_dict["classes"][label_name]["ap"] = np.average(aps[ d_inf,li, :])
avg_dict["classes"][label_name]["ap"] = np.average(aps[ d_inf,li,oAllBut25])
avg_dict["classes"][label_name]["ap50%"] = np.average(aps[ d_inf,li,o50])
avg_dict["classes"][label_name]["ap25%"] = np.average(aps[ d_inf,li,o25])
return avg_dict
def assign_instances_for_scan(scene_name, pred_info, gt_file):
try:
gt_ids = util_3d.load_ids(gt_file)
except Exception as e:
util.print_error('unable to load ' + gt_file + ': ' + str(e))
# get gt instances
gt_instances = util_3d.get_instances(gt_ids, VALID_CLASS_IDS, CLASS_LABELS, ID_TO_LABEL)
# gt instance statistics
# for key, item in gt_instances.items():
# print('key', key)
# for _ins in item:
# print(_ins['vert_count'])
# associate
gt2pred = gt_instances.copy()
for label in gt2pred:
for gt in gt2pred[label]:
gt['matched_pred'] = []
pred2gt = {}
for label in CLASS_LABELS:
pred2gt[label] = []
num_pred_instances = 0
# mask of void labels in the groundtruth
bool_void = np.logical_not(np.in1d(gt_ids//1000, VALID_CLASS_IDS))
# go thru all prediction masks
nMask = pred_info['label_id'].shape[0]
for i in range(nMask):
label_id = int(pred_info['label_id'][i])
conf = pred_info['conf'][i]
if not label_id in ID_TO_LABEL:
continue
label_name = ID_TO_LABEL[label_id]
# read the mask
pred_mask = pred_info['mask'][i] # (N), long
if len(pred_mask) != len(gt_ids):
util.print_error('wrong number of lines in mask#%d: ' % (i) + '(%d) vs #mesh vertices (%d)' % (len(pred_mask), len(gt_ids)))
# convert to binary
pred_mask = np.not_equal(pred_mask, 0)
num = np.count_nonzero(pred_mask)
if num < MIN_REGION_SIZES[0]:
continue # skip if empty
pred_instance = {}
pred_instance['filename'] = '{}_{:03d}'.format(scene_name, num_pred_instances)
pred_instance['pred_id'] = num_pred_instances
pred_instance['label_id'] = label_id
pred_instance['vert_count'] = num
pred_instance['confidence'] = conf
pred_instance['void_intersection'] = np.count_nonzero(np.logical_and(bool_void, pred_mask))
# matched gt instances
matched_gt = []
# go thru all gt instances with matching label
for (gt_num, gt_inst) in enumerate(gt2pred[label_name]):
intersection = np.count_nonzero(np.logical_and(gt_ids == gt_inst['instance_id'], pred_mask))
if intersection > 0:
gt_copy = gt_inst.copy()
pred_copy = pred_instance.copy()
gt_copy['intersection'] = intersection
pred_copy['intersection'] = intersection
matched_gt.append(gt_copy)
gt2pred[label_name][gt_num]['matched_pred'].append(pred_copy)
pred_instance['matched_gt'] = matched_gt
num_pred_instances += 1
pred2gt[label_name].append(pred_instance)
return gt2pred, pred2gt
def print_results(avgs):
from util.log import logger
sep = ""
col1 = ":"
lineLen = 64
logger.info("")
logger.info("#" * lineLen)
line = ""
line += "{:<15}".format("what" ) + sep + col1
line += "{:>15}".format("AP" ) + sep
line += "{:>15}".format("AP_50%" ) + sep
line += "{:>15}".format("AP_25%" ) + sep
logger.info(line)
logger.info("#" * lineLen)
for (li,label_name) in enumerate(CLASS_LABELS):
ap_avg = avgs["classes"][label_name]["ap"]
ap_50o = avgs["classes"][label_name]["ap50%"]
ap_25o = avgs["classes"][label_name]["ap25%"]
line = "{:<15}".format(label_name) + sep + col1
line += sep + "{:>15.3f}".format(ap_avg ) + sep
line += sep + "{:>15.3f}".format(ap_50o ) + sep
line += sep + "{:>15.3f}".format(ap_25o ) + sep
logger.info(line)
all_ap_avg = avgs["all_ap"]
all_ap_50o = avgs["all_ap_50%"]
all_ap_25o = avgs["all_ap_25%"]
logger.info("-"*lineLen)
line = "{:<15}".format("average") + sep + col1
line += "{:>15.3f}".format(all_ap_avg) + sep
line += "{:>15.3f}".format(all_ap_50o) + sep
line += "{:>15.3f}".format(all_ap_25o) + sep
logger.info(line)
logger.info("")