|
| 1 | +/* AVL tree is a self-balancing Binary Search Tree (BST) |
| 2 | + * where the difference between heights of left and right |
| 3 | + * subtrees cannot be more than one for all nodes. |
| 4 | + * We can guarantee an upper bound of O(Logn) for all |
| 5 | + * operations. The height of an AVL tree is always O(Logn) |
| 6 | + * where n is the number of nodes in the tree. |
| 7 | +*/ |
| 8 | + |
| 9 | +#include<bits/stdc++.h> |
| 10 | +using namespace std; |
| 11 | + |
| 12 | +struct Node{ |
| 13 | + int data; |
| 14 | + int height; |
| 15 | + Node *right,*left; |
| 16 | +}; |
| 17 | + |
| 18 | +int height(Node* N){ |
| 19 | + if (N == NULL) |
| 20 | + return 0; |
| 21 | + return N->height; |
| 22 | +} |
| 23 | + |
| 24 | +int getBalance(Node* N){ |
| 25 | + if(N == NULL) |
| 26 | + return 0; |
| 27 | + return height(N->left) - height(N->right); |
| 28 | +} |
| 29 | + |
| 30 | +Node* newNode(int data){ |
| 31 | + Node* temp=new Node; |
| 32 | + temp->data=data; |
| 33 | + temp->height=1; |
| 34 | + temp->right=NULL; |
| 35 | + temp->left=NULL; |
| 36 | + return temp; |
| 37 | +} |
| 38 | + |
| 39 | +Node* rightRotate(Node* y){ |
| 40 | + Node* x=y->left; |
| 41 | + Node* temp=x->right; |
| 42 | + |
| 43 | + x->right=y; |
| 44 | + y->left=temp; |
| 45 | + |
| 46 | + |
| 47 | + // Update the height of the root at the last |
| 48 | + y->height = max(height(y->left), height(y->right))+1; |
| 49 | + x->height = max(height(x->left), height(x->right))+1; |
| 50 | + |
| 51 | + return x;//new root |
| 52 | +} |
| 53 | + |
| 54 | +Node* leftRotate(Node* x){ |
| 55 | + Node* y=x->right; |
| 56 | + Node* temp=y->left; |
| 57 | + |
| 58 | + y->left=x; |
| 59 | + x->right=temp; |
| 60 | + |
| 61 | + x->height = max(height(x->left), height(x->right))+1; |
| 62 | + y->height = max(height(y->left), height(y->right))+1; |
| 63 | + |
| 64 | + return y;//new root |
| 65 | + |
| 66 | +} |
| 67 | + |
| 68 | +Node* insert(Node* temp,int data){ |
| 69 | + if(temp == NULL) |
| 70 | + return newNode(data); |
| 71 | + if(data>temp->data) |
| 72 | + temp->right=insert(temp->right,data); |
| 73 | + else if(data<temp->data) |
| 74 | + temp->left=insert(temp->left,data); |
| 75 | + else |
| 76 | + return temp; //no duplicates |
| 77 | + |
| 78 | + temp->height = 1 + max(height(temp->left), height(temp->right)); |
| 79 | + int balance = getBalance(temp); |
| 80 | + |
| 81 | + //Left Left Case---------Right Rotation |
| 82 | + if(balance > 1 && data < temp->left->data) |
| 83 | + return rightRotate(temp); |
| 84 | + //Right Right Case-------Left Rotation |
| 85 | + if(balance < -1 && data > temp->right->data) |
| 86 | + return leftRotate(temp); |
| 87 | + //Left Right Case--------Left Right Rotation |
| 88 | + if(balance > 1 && data > temp->left->data){ |
| 89 | + temp->left = leftRotate(temp->left); |
| 90 | + return rightRotate(temp); |
| 91 | + } |
| 92 | + //Right Left Case--------Right Left Rotation |
| 93 | + if(balance < -1 && data < temp->right->data){ |
| 94 | + temp->right = rightRotate(temp->right); |
| 95 | + return leftRotate(temp); |
| 96 | + } |
| 97 | + return temp; |
| 98 | +} |
| 99 | + |
| 100 | + |
| 101 | +Node* minValueNode(Node* temp){ |
| 102 | + Node* current=temp; |
| 103 | + while(current->left != NULL){ |
| 104 | + current= current->left; |
| 105 | + } |
| 106 | + return current; |
| 107 | +} |
| 108 | + |
| 109 | +Node* deleteNode(Node* root,int data){ |
| 110 | + if(root== NULL) |
| 111 | + return root; |
| 112 | + if(data > root->data) |
| 113 | + root->right = deleteNode(root->right,data); |
| 114 | + else if(data < root->data) |
| 115 | + root->left = deleteNode(root->left,data); |
| 116 | + else |
| 117 | + { |
| 118 | + if(root->left == NULL){ |
| 119 | + Node* temp=root->right; |
| 120 | + free(root); |
| 121 | + return temp; |
| 122 | + } |
| 123 | + else if(root->right == NULL){ |
| 124 | + Node* temp=root->left; |
| 125 | + free(root); |
| 126 | + return temp; |
| 127 | + } |
| 128 | + |
| 129 | + Node *temp=minValueNode(root->right); |
| 130 | + root->data=temp->data; |
| 131 | + root->right=deleteNode(root->right,temp->data); |
| 132 | + } |
| 133 | + if(root==NULL) |
| 134 | + return root; |
| 135 | + |
| 136 | + root->height=1+max(height(root->left),height(root->right)); |
| 137 | + |
| 138 | + int balance=getBalance(root); |
| 139 | + |
| 140 | + // Left Left Case |
| 141 | + if (balance > 1 && getBalance(root->left) >= 0) |
| 142 | + return rightRotate(root); |
| 143 | + |
| 144 | + // Left Right Case |
| 145 | + if (balance > 1 && getBalance(root->left) < 0) |
| 146 | + { |
| 147 | + root->left = leftRotate(root->left); |
| 148 | + return rightRotate(root); |
| 149 | + } |
| 150 | + |
| 151 | + // Right Right Case |
| 152 | + if (balance < -1 && getBalance(root->right) <= 0) |
| 153 | + return leftRotate(root); |
| 154 | + |
| 155 | + // Right Left Case |
| 156 | + if (balance < -1 && getBalance(root->right) > 0) |
| 157 | + { |
| 158 | + root->right = rightRotate(root->right); |
| 159 | + return leftRotate(root); |
| 160 | + } |
| 161 | + |
| 162 | + return root; |
| 163 | +} |
| 164 | + |
| 165 | +void preOrder(Node *root) |
| 166 | +{ |
| 167 | + if(!root) |
| 168 | + return; |
| 169 | + cout<<root->data<<" "; |
| 170 | + preOrder(root->left); |
| 171 | + preOrder(root->right); |
| 172 | +} |
| 173 | + |
| 174 | +int main() |
| 175 | +{ |
| 176 | + Node *root = NULL; |
| 177 | + |
| 178 | + root = insert(root, 9); |
| 179 | + root = insert(root, 5); |
| 180 | + root = insert(root, 10); |
| 181 | + root = insert(root, 0); |
| 182 | + root = insert(root, 6); |
| 183 | + root = insert(root, 11); |
| 184 | + root = insert(root, -1); |
| 185 | + root = insert(root, 1); |
| 186 | + root = insert(root, 2); |
| 187 | + |
| 188 | + /* The constructed AVL Tree would be |
| 189 | + 9 |
| 190 | + / \ |
| 191 | + 1 10 |
| 192 | + / \ \ |
| 193 | + 0 5 11 |
| 194 | + / / \ |
| 195 | + -1 2 6 |
| 196 | + */ |
| 197 | + |
| 198 | + printf("Preorder traversal of the constructed AVL " |
| 199 | + "tree is \n"); |
| 200 | + preOrder(root); |
| 201 | + |
| 202 | + root = deleteNode(root, 10); |
| 203 | + |
| 204 | + /* The AVL Tree after deletion of 10 |
| 205 | + 1 |
| 206 | + / \ |
| 207 | + 0 9 |
| 208 | + / / \ |
| 209 | + -1 5 11 |
| 210 | + / \ |
| 211 | + 2 6 |
| 212 | + */ |
| 213 | + |
| 214 | + printf("\nPreorder traversal after deletion of 10 \n"); |
| 215 | + preOrder(root); |
| 216 | + |
| 217 | + return 0; |
| 218 | +} |
| 219 | + |
0 commit comments