LightRAG helps developers with both building and optimizing Retriever-Agent-Generator (RAG) pipelines. It is light, modular, and robust.
We will ask the model to respond with explaination
and example
of a concept. And we will build a pipeline to get the structured output as QAOutput
.
from dataclasses import dataclass, field
from lightrag.core import Component, Generator, DataClass, fun_to_component, Sequential
from lightrag.components.model_client import GroqAPIClient
from lightrag.components.output_parsers import JsonOutputParser
@dataclass
class QAOutput(DataClass):
explaination: str = field(
metadata={"desc": "A brief explaination of the concept in one sentence."}
)
example: str = field(metadata={"desc": "An example of the concept in a sentence."})
@fun_to_component
def to_qa_output(data: dict) -> QAOutput:
return QAOutput.from_dict(data)
class QA(Component):
def __init__(self):
super().__init__()
template = r"""<SYS>
You are a helpful assistant.
<OUTPUT_FORMAT>
{{output_format_str}}
</OUTPUT_FORMAT>
</SYS>
User: {{input_str}}
You:
"""
parser = JsonOutputParser(data_class=QAOutput)
self.generator = Generator(
model_client=GroqAPIClient(),
model_kwargs={"model": "llama3-8b-8192"},
template=template,
prompt_kwargs={"output_format_str": parser.format_instructions()},
output_processors=Sequential(parser, to_qa_output),
)
def call(self, query: str):
return self.generator.call({"input_str": query})
async def acall(self, query: str):
return await self.generator.acall({"input_str": query})
Run the following code for visualization and calling the model.
qa = QA()
print(qa)
# call
output = qa("What is LLM?")
print(output)
Structure of the pipeline
Here is what we get from print(qa)
:
QA(
(generator): Generator(
model_kwargs={'model': 'llama3-8b-8192'},
(prompt): Prompt(
template: <SYS>
You are a helpful assistant.
<OUTPUT_FORMAT>
{{output_format_str}}
</OUTPUT_FORMAT>
</SYS>
User: {{input_str}}
You:
, prompt_kwargs: {'output_format_str': 'Your output should be formatted as a standard JSON instance with the following schema:\n```\n{\n "explaination": "A brief explaination of the concept in one sentence. (str) (required)",\n "example": "An example of the concept in a sentence. (str) (required)"\n}\n```\n-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!\n-Use double quotes for the keys and string values.\n-Follow the JSON formatting conventions.'}, prompt_variables: ['output_format_str', 'input_str']
)
(model_client): GroqAPIClient()
(output_processors): Sequential(
(0): JsonOutputParser(
data_class=QAOutput, examples=None, exclude_fields=None
(json_output_format_prompt): Prompt(
template: Your output should be formatted as a standard JSON instance with the following schema:
```
{{schema}}
```
{% if example %}
Examples:
```
{{example}}
```
{% endif %}
-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!
-Use double quotes for the keys and string values.
-Follow the JSON formatting conventions., prompt_variables: ['schema', 'example']
)
(output_processors): JsonParser()
)
(1): ToQaOutputComponent(fun_name=to_qa_output)
)
)
)
The output
Here is what we get from print(output)
:
GeneratorOutput(data=QAOutput(explaination='LLM stands for Large Language Model, which refers to a type of artificial intelligence designed to process and generate human-like language.', example='For example, a LLM can be trained to generate news articles, conversations, or even entire books, and can be used for a variety of applications such as language translation, text summarization, and chatbots.'), error=None, usage=None, raw_response='```\n{\n "explaination": "LLM stands for Large Language Model, which refers to a type of artificial intelligence designed to process and generate human-like language.",\n "example": "For example, a LLM can be trained to generate news articles, conversations, or even entire books, and can be used for a variety of applications such as language translation, text summarization, and chatbots."\n}', metadata=None)
See the prompt
Use the following code:
qa2.generator.print_prompt(
output_format_str=qa2.generator.output_processors[0].format_instructions(),
input_str="What is LLM?",
)
The output will be:
You are a helpful assistant.
<OUTPUT_FORMAT>
Your output should be formatted as a standard JSON instance with the following schema:
{ "explaination": "A brief explaination of the concept in one sentence. (str) (required)", "example": "An example of the concept in a sentence. (str) (required)" }
-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!
-Use double quotes for the keys and string values.
-Follow the JSON formatting conventions.
</OUTPUT_FORMAT>
</SYS>
User: What is LLM?
You:
Install LightRAG with pip:
pip install lightrag
Please refer to the full installation guide for more details.
LightRAG full documentation available at lightrag.sylph.ai:
- Introduction
- Full installation guide
- Design philosophy: Design based on three principles: Simplicity over complexity, Quality over quantity, and Optimizing over building.
- Class hierarchy: We have no more than two levels of subclasses. The bare minimum abstraction provides developers with maximum customizability and simplicity.
- Tutorials: Learn the
why
andhow-to
(customize and integrate) behind each core part within theLightRAG
library. - API reference
@software{Yin2024LightRAG,
author = {Li Yin},
title = {{LightRAG: The PyTorch Library for Large Language Model (LLM) Applications}},
month = {7},
year = {2024},
doi = {10.5281/zenodo.12639531},
url = {https://github.com/SylphAI-Inc/LightRAG}
}