Given an array A
of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L
and M
. (For clarification, the L
-length subarray could occur before or after the M
-length subarray.)
Formally, return the largest V
for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, or0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Note:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
Related Topics:
Array
// OJ: https://leetcode.com/problems/maximum-sum-of-two-non-overlapping-subarrays/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
private:
int get(vector<int> &v, int i) {
return (i >= 0 && i < v.size()) ? v[i] : 0;
}
public:
int maxSumTwoNoOverlap(vector<int>& A, int L, int M) {
int N = A.size(), ans = 0;
partial_sum(A.begin(), A.end(), A.begin());
vector<int> maxLeft(N, 0), maxRight(N, 0);
for (int i = L - 1; i < N; ++i) maxLeft[i] = max(get(maxLeft, i - 1), A[i] - get(A, i - L));
for (int i = N - L; i >= 0; --i) maxRight[i] = max(get(maxRight, i + 1), A[i + L - 1] - get(A, i - 1));
for (int i = M - 1; i < N; ++i) {
int sum = A[i] - get(A, i - M)
+ max(get(maxLeft, i - M), get(maxRight, i + 1));
ans = max(ans, sum);
}
return ans;
}
};
// OJ: https://leetcode.com/problems/maximum-sum-of-two-non-overlapping-subarrays/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
// Ref: https://leetcode.com/problems/maximum-sum-of-two-non-overlapping-subarrays/discuss/278251/JavaC%2B%2BPython-O(N)Time-O(1)-Space
class Solution {
public:
int maxSumTwoNoOverlap(vector<int>& A, int L, int M) {
partial_sum(A.begin(), A.end(), A.begin());
int ans = A[L + M - 1], Lmax = A[L - 1], Mmax = A[M - 1];
for (int i = L + M; i < A.size(); ++i) {
Lmax = max(Lmax, A[i - M] - A[i - L - M]);
Mmax = max(Mmax, A[i - L] - A[i - L - M]);
ans = max(ans, max(Lmax + A[i] - A[i - M], Mmax + A[i] - A[i - L]));
}
return ans;
}
};