Install dependencies following readme.md
export CONFIG_NAME=egs/datasets/audio/lj/ps_flow_nips2021.yaml
export MY_EXP_NAME=ps_normal_exp
export CONFIG_NAME=egs/datasets/audio/lj/ps_flow_small_nips2021.yaml
export MY_EXP_NAME=ps_small_exp
Prepare dataset following prepare_data.md
Prepare vocoder following prepare_vocoder.md
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config $CONFIG_NAME --exp_name $MY_EXP_NAME --reset
You can check the training and validation curves open Tensorboard via:
tensorboard --logdir checkpoints/$MY_EXP_NAME
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config $PS_CONFIG --exp_name $MY_EXP_NAME --infer
Download checkpoints from https://github.com/NATSpeech/NATSpeech/releases/download/pretrained_models/ps_normal_exp.zip and unzip it to checkpoints/ps_normal_exp
. Then you can directly run inference command:
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --exp_name ps_normal_exp --infer
Download checkpoints from https://github.com/NATSpeech/NATSpeech/releases/download/pretrained_models/ps_small_exp.zip and unzip it to checkpoints/ps_small_exp
. Then you can directly run inference command:
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --exp_name ps_small_exp --infer
If you find this useful for your research, please use the following.
@article{ren2021portaspeech,
title={PortaSpeech: Portable and High-Quality Generative Text-to-Speech},
author={Ren, Yi and Liu, Jinglin and Zhao, Zhou},
journal={Advances in Neural Information Processing Systems},
volume={34},
year={2021}
}