@@ -71,9 +71,9 @@ def __call__(self, p):
71
71
def n_parameters (self ):
72
72
return len (self .pars )
73
73
74
- lower_v = [- 50 ]* v_steps .count (np .nan )
75
- upper_v = [40 ]* v_steps .count (np .nan )
76
- lower_t_p = [1000 ]* (t_steps .count (np .nan )- 1 )
74
+ lower_v = [- 60 ]* v_steps .count (np .nan )
75
+ upper_v = [50 ]* v_steps .count (np .nan )
76
+ lower_t_p = [20 ]* (t_steps .count (np .nan )- 1 )
77
77
upper_t_p = [5000 ]* (t_steps .count (np .nan )- 1 )
78
78
lower_t_i = [50 ]
79
79
upper_t_i = [20000 ]
@@ -126,7 +126,7 @@ def n_parameters(self):
126
126
127
127
opt .optimiser ().set_population_size (CMAES_pop )
128
128
opt .set_max_iterations (max_iter )
129
- opt .set_max_unchanged_iterations (iterations = 20 , threshold = 1e-2 )
129
+ opt .set_max_unchanged_iterations (iterations = 100 , threshold = 1e-2 )
130
130
opt .set_parallel (- 1 )
131
131
132
132
try :
@@ -165,7 +165,7 @@ def main(model_nums, max_time, bounds, herg, output_folder):
165
165
drug_fit_pars [m ] = parlist
166
166
167
167
# perform optimisation
168
- p_out , cost = get_opt_prot (drug_fit_pars , herg , v_steps , t_steps , p0_1 , CMAES_pop = 7 , max_iter = 240 , alt_protocol = p0_2 )
168
+ p_out , cost = get_opt_prot (drug_fit_pars , herg , v_steps , t_steps , p0_1 , CMAES_pop = 7 , max_iter = 750 , alt_protocol = p0_2 )
169
169
print (f'Final objective cost: { cost } ' )
170
170
print (f'Final optimised params: { p_out } ' )
171
171
0 commit comments