-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathseries.py
859 lines (748 loc) · 26.5 KB
/
series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
"""Defining the OpenTimeSeries class."""
# mypy: disable-error-code="no-any-return"
from __future__ import annotations
from collections.abc import Iterable
from copy import deepcopy
from logging import getLogger
from typing import TYPE_CHECKING, Any, TypeVar, cast
if TYPE_CHECKING: # pragma: no cover
import datetime as dt
from numpy import (
append,
array,
cumprod,
insert,
isnan,
log,
sqrt,
square,
)
from pandas import (
DataFrame,
DatetimeIndex,
Index,
MultiIndex,
Series,
date_range,
)
from pydantic import field_validator, model_validator
from ._common_model import _CommonModel
from .datefixer import _do_resample_to_business_period_ends, date_fix
from .owntypes import (
Countries,
CountriesType,
Currency,
CurrencyStringType,
DateAlignmentError,
DateListType,
DaysInYearType,
IncorrectArgumentComboError,
LiteralBizDayFreq,
LiteralPandasReindexMethod,
LiteralSeriesProps,
OpenTimeSeriesPropertiesList,
Self,
ValueListType,
ValueType,
)
logger = getLogger(__name__)
__all__ = ["OpenTimeSeries", "timeseries_chain"]
TypeOpenTimeSeries = TypeVar("TypeOpenTimeSeries", bound="OpenTimeSeries")
# noinspection PyUnresolvedReferences,PyNestedDecorators
class OpenTimeSeries(_CommonModel):
"""OpenTimeSeries objects are at the core of the openseries package.
The intended use is to allow analyses of financial timeseries.
It is only intended for daily or less frequent data samples.
Parameters
----------
timeseries_id : str
Database identifier of the timeseries
instrument_id: str
Database identifier of the instrument associated with the timeseries
name : str
string identifier of the timeseries and/or instrument
valuetype : ValueType
Identifies if the series is a series of values or returns
dates : DateListType
Dates of the individual timeseries items
These dates will not be altered by methods
values : ValueListType
The value or return values of the timeseries items
These values will not be altered by methods
local_ccy: bool
Boolean flag indicating if timeseries is in local currency
tsdf: pandas.DataFrame
Pandas object holding dates and values that can be altered via methods
currency : CurrencyStringType
ISO 4217 currency code of the timeseries
domestic : CurrencyStringType, default: "SEK"
ISO 4217 currency code of the user's home currency
countries: CountriesType, default: "SE"
(List of) country code(s) according to ISO 3166-1 alpha-2
isin : str, optional
ISO 6166 identifier code of the associated instrument
label : str, optional
Placeholder for a name of the timeseries
"""
timeseries_id: str
instrument_id: str
name: str
valuetype: ValueType
dates: DateListType
values: ValueListType
local_ccy: bool
tsdf: DataFrame
currency: CurrencyStringType
domestic: CurrencyStringType = "SEK"
countries: CountriesType = "SE"
isin: str | None = None
label: str | None = None
@field_validator("domestic", mode="before")
@classmethod
def _validate_domestic(cls, value: CurrencyStringType) -> CurrencyStringType:
"""Pydantic validator to ensure domestic field is validated."""
_ = Currency(ccy=value)
return value
@field_validator("countries", mode="before")
@classmethod
def _validate_countries(cls, value: CountriesType) -> CountriesType:
"""Pydantic validator to ensure countries field is validated."""
_ = Countries(countryinput=value)
return value
@model_validator(mode="after") # type: ignore[misc,unused-ignore]
def _dates_and_values_validate(self: Self) -> Self:
"""Pydantic validator to ensure dates and values are validated."""
values_list_length = len(self.values)
dates_list_length = len(self.dates)
dates_set_length = len(set(self.dates))
if dates_list_length != dates_set_length:
msg = "Dates are not unique"
raise ValueError(msg)
if values_list_length < 1:
msg = "There must be at least 1 value"
raise ValueError(msg)
if (
(dates_list_length != values_list_length)
or (len(self.tsdf.index) != self.tsdf.shape[0])
or (self.tsdf.shape[1] != 1)
):
msg = "Number of dates and values passed do not match"
raise ValueError(msg)
return self
@classmethod
def from_arrays(
cls,
name: str,
dates: DateListType,
values: ValueListType,
valuetype: ValueType = ValueType.PRICE,
timeseries_id: str = "",
instrument_id: str = "",
isin: str | None = None,
baseccy: CurrencyStringType = "SEK",
*,
local_ccy: bool = True,
) -> Self:
"""Create series from a Pandas DataFrame or Series.
Parameters
----------
name: str
string identifier of the timeseries and/or instrument
dates: DateListType
List of date strings as ISO 8601 YYYY-MM-DD
values: ValueListType
Array of float values
valuetype : ValueType, default: ValueType.PRICE
Identifies if the series is a series of values or returns
timeseries_id : str, optional
Database identifier of the timeseries
instrument_id: str, optional
Database identifier of the instrument associated with the timeseries
isin : str, optional
ISO 6166 identifier code of the associated instrument
baseccy : CurrencyStringType, default: "SEK"
ISO 4217 currency code of the timeseries
local_ccy: bool, default: True
Boolean flag indicating if timeseries is in local currency
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
return cls(
name=name,
label=name,
dates=dates,
values=values,
valuetype=valuetype,
timeseries_id=timeseries_id,
instrument_id=instrument_id,
isin=isin,
currency=baseccy,
local_ccy=local_ccy,
tsdf=DataFrame(
data=values,
index=[deyt.date() for deyt in DatetimeIndex(dates)],
columns=[[name], [valuetype]],
dtype="float64",
),
)
@classmethod
def from_df(
cls,
dframe: Series[float] | DataFrame,
column_nmbr: int = 0,
valuetype: ValueType = ValueType.PRICE,
baseccy: CurrencyStringType = "SEK",
*,
local_ccy: bool = True,
) -> Self:
"""Create series from a Pandas DataFrame or Series.
Parameters
----------
dframe: DataFrame | Series[float]
Pandas DataFrame or Series
column_nmbr : int, default: 0
Using iloc[:, column_nmbr] to pick column
valuetype : ValueType, default: ValueType.PRICE
Identifies if the series is a series of values or returns
baseccy : CurrencyStringType, default: "SEK"
ISO 4217 currency code of the timeseries
local_ccy: bool, default: True
Boolean flag indicating if timeseries is in local currency
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
msg = "Argument dframe must be pandas Series or DataFrame."
values: list[float]
if isinstance(dframe, Series):
if isinstance(dframe.name, tuple):
label, _ = dframe.name
else:
label = dframe.name
values = cast("list[float]", dframe.to_numpy().tolist())
elif isinstance(dframe, DataFrame):
values = dframe.iloc[:, column_nmbr].to_list()
if isinstance(dframe.columns, MultiIndex):
if _check_if_none(
dframe.columns.get_level_values(0).to_numpy()[column_nmbr],
):
label = "Series"
msg = f"Label missing. Adding: {label}"
logger.warning(msg=msg)
else:
label = dframe.columns.get_level_values(0).to_numpy()[column_nmbr]
if _check_if_none(
dframe.columns.get_level_values(1).to_numpy()[column_nmbr],
):
valuetype = ValueType.PRICE
msg = f"valuetype missing. Adding: {valuetype.value}"
logger.warning(msg=msg)
else:
valuetype = dframe.columns.get_level_values(1).to_numpy()[
column_nmbr
]
else:
label = cast("MultiIndex", dframe.columns).to_numpy()[column_nmbr]
else:
raise TypeError(msg)
dates = [date_fix(d).strftime("%Y-%m-%d") for d in dframe.index]
return cls(
timeseries_id="",
instrument_id="",
currency=baseccy,
dates=dates,
name=label,
label=label,
valuetype=valuetype,
values=values,
local_ccy=local_ccy,
tsdf=DataFrame(
data=values,
index=[deyt.date() for deyt in DatetimeIndex(dates)],
columns=[[label], [valuetype]],
dtype="float64",
),
)
@classmethod
def from_fixed_rate(
cls,
rate: float,
d_range: DatetimeIndex | None = None,
days: int | None = None,
end_dt: dt.date | None = None,
label: str = "Series",
valuetype: ValueType = ValueType.PRICE,
baseccy: CurrencyStringType = "SEK",
*,
local_ccy: bool = True,
) -> Self:
"""Create series from values accruing with a given fixed rate return.
Providing a date_range of type Pandas DatetimeIndex takes priority over
providing a combination of days and an end date.
Parameters
----------
rate: float
The accrual rate
d_range: DatetimeIndex, optional
A given range of dates
days: int, optional
Number of days to generate when date_range not provided. Must be combined
with end_dt
end_dt: datetime.date, optional
End date of date range to generate when date_range not provided. Must be
combined with days
label : str
Placeholder for a name of the timeseries
valuetype : ValueType, default: ValueType.PRICE
Identifies if the series is a series of values or returns
baseccy : CurrencyStringType, default: "SEK"
The currency of the timeseries
local_ccy: bool, default: True
Boolean flag indicating if timeseries is in local currency
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
if not isinstance(d_range, Iterable) and all([days, end_dt]):
d_range = DatetimeIndex(
[d.date() for d in date_range(periods=days, end=end_dt, freq="D")],
)
elif not isinstance(d_range, Iterable) and not all([days, end_dt]):
msg = "If d_range is not provided both days and end_dt must be."
raise IncorrectArgumentComboError(msg)
deltas = array(
[i.days for i in DatetimeIndex(d_range)[1:] - DatetimeIndex(d_range)[:-1]], # type: ignore[arg-type]
)
arr: list[float] = list(cumprod(insert(1 + deltas * rate / 365, 0, 1.0)))
dates = [d.strftime("%Y-%m-%d") for d in DatetimeIndex(d_range)] # type: ignore[arg-type]
return cls(
timeseries_id="",
instrument_id="",
currency=baseccy,
dates=dates,
name=label,
label=label,
valuetype=valuetype,
values=arr,
local_ccy=local_ccy,
tsdf=DataFrame(
data=arr,
index=[d.date() for d in DatetimeIndex(dates)],
columns=[[label], [valuetype]],
dtype="float64",
),
)
def from_deepcopy(self: Self) -> Self:
"""Create copy of OpenTimeSeries object.
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
return deepcopy(self)
def pandas_df(self: Self) -> Self:
"""Populate .tsdf Pandas DataFrame from the .dates and .values lists.
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
dframe = DataFrame(
data=self.values,
index=[d.date() for d in DatetimeIndex(self.dates)],
columns=[[self.label], [self.valuetype]],
dtype="float64",
)
self.tsdf = dframe
return self
def all_properties(
self: Self,
properties: list[LiteralSeriesProps] | None = None,
) -> DataFrame:
"""Calculate chosen properties.
Parameters
----------
properties: list[LiteralSeriesProps], optional
The properties to calculate. Defaults to calculating all available.
Returns
-------
pandas.DataFrame
Properties of the OpenTimeSeries
"""
if not properties:
properties = cast(
"list[LiteralSeriesProps]",
OpenTimeSeriesPropertiesList.allowed_strings,
)
props = OpenTimeSeriesPropertiesList(*properties)
pdf = DataFrame.from_dict({x: getattr(self, x) for x in props}, orient="index")
pdf.columns = self.tsdf.columns
return pdf
def value_to_ret(self: Self) -> Self:
"""Convert series of values into series of returns.
Returns
-------
OpenTimeSeries
The returns of the values in the series
"""
returns = self.tsdf.ffill().pct_change()
returns.iloc[0] = 0
self.valuetype = ValueType.RTRN
arrays = [[self.label], [self.valuetype]]
returns.columns = MultiIndex.from_arrays(
arrays=arrays # type: ignore[arg-type,unused-ignore]
)
self.tsdf = returns.copy()
return self
def value_to_diff(self: Self, periods: int = 1) -> Self:
"""Convert series of values to series of their period differences.
Parameters
----------
periods: int, default: 1
The number of periods between observations over which difference
is calculated
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
self.tsdf = self.tsdf.diff(periods=periods)
self.tsdf.iloc[0] = 0
self.valuetype = ValueType.RTRN
self.tsdf.columns = MultiIndex.from_arrays(
[
[self.label],
[self.valuetype],
],
)
return self
def to_cumret(self: Self) -> Self:
"""Convert series of returns into cumulative series of values.
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
if self.valuetype == ValueType.PRICE:
self.value_to_ret()
self.tsdf = self.tsdf.add(1.0)
self.tsdf = self.tsdf.cumprod(axis=0) / self.tsdf.iloc[0]
self.valuetype = ValueType.PRICE
self.tsdf.columns = MultiIndex.from_arrays(
[
[self.label],
[self.valuetype],
],
)
return self
def from_1d_rate_to_cumret(
self: Self,
days_in_year: int = 365,
divider: float = 1.0,
) -> Self:
"""Convert series of 1-day rates into series of cumulative values.
Parameters
----------
days_in_year: int, default 365
Calendar days per year used as divisor
divider: float, default 100.0
Convenience divider for when the 1-day rate is not scaled correctly
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
arr = array(self.values) / divider
deltas = array([i.days for i in self.tsdf.index[1:] - self.tsdf.index[:-1]])
# noinspection PyTypeChecker
arr = cumprod( # type: ignore[assignment,unused-ignore]
a=insert(arr=1.0 + deltas * arr[:-1] / days_in_year, obj=0, values=1.0)
)
self.dates = [d.strftime("%Y-%m-%d") for d in self.tsdf.index]
self.values = list(arr)
self.valuetype = ValueType.PRICE
self.tsdf = DataFrame(
data=self.values,
index=[d.date() for d in DatetimeIndex(self.dates)],
columns=[[self.label], [self.valuetype]],
dtype="float64",
)
return self
def resample(
self: Self,
freq: LiteralBizDayFreq | str = "BME",
) -> Self:
"""Resamples the timeseries frequency.
Parameters
----------
freq: LiteralBizDayFreq | str, default "BME"
The date offset string that sets the resampled frequency
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
self.tsdf.index = DatetimeIndex(self.tsdf.index)
self.tsdf = self.tsdf.resample(freq).last()
self.tsdf.index = Index(d.date() for d in DatetimeIndex(self.tsdf.index))
return self
def resample_to_business_period_ends(
self: Self,
freq: LiteralBizDayFreq = "BME",
method: LiteralPandasReindexMethod = "nearest",
) -> Self:
"""Resamples timeseries frequency to the business calendar month end dates.
Stubs left in place. Stubs will be aligned to the shortest stub.
Parameters
----------
freq: LiteralBizDayFreq, default BME
The date offset string that sets the resampled frequency
method: LiteralPandasReindexMethod, default: nearest
Controls the method used to align values across columns
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
dates = _do_resample_to_business_period_ends(
data=self.tsdf,
freq=freq,
countries=self.countries,
)
self.tsdf = self.tsdf.reindex([deyt.date() for deyt in dates], method=method)
return self
def ewma_vol_func(
self: Self,
lmbda: float = 0.94,
day_chunk: int = 11,
dlta_degr_freedms: int = 0,
months_from_last: int | None = None,
from_date: dt.date | None = None,
to_date: dt.date | None = None,
periods_in_a_year_fixed: DaysInYearType | None = None,
) -> Series[float]:
"""Exponentially Weighted Moving Average Model for Volatility.
https://www.investopedia.com/articles/07/ewma.asp.
Parameters
----------
lmbda: float, default: 0.94
Scaling factor to determine weighting.
day_chunk: int, default: 0
Sampling the data which is assumed to be daily.
dlta_degr_freedms: int, default: 0
Variance bias factor taking the value 0 or 1.
months_from_last : int, optional
number of months offset as positive integer. Overrides use of from_date
and to_date
from_date : datetime.date, optional
Specific from date
to_date : datetime.date, optional
Specific to date
periods_in_a_year_fixed : DaysInYearType, optional
Allows locking the periods-in-a-year to simplify test cases and comparisons
Returns
-------
Pandas.Series[float]
Series EWMA volatility
"""
earlier, later = self.calc_range(months_from_last, from_date, to_date)
if periods_in_a_year_fixed:
time_factor = float(periods_in_a_year_fixed)
else:
how_many = self.tsdf.loc[
cast("int", earlier) : cast("int", later),
self.tsdf.columns.to_numpy()[0],
].count()
fraction = (later - earlier).days / 365.25
time_factor = how_many / fraction
data = self.tsdf.loc[cast("int", earlier) : cast("int", later)].copy()
data[self.label, ValueType.RTRN] = (
data.loc[:, self.tsdf.columns.to_numpy()[0]].apply(log).diff()
)
rawdata = [
data.loc[:, cast("int", (self.label, ValueType.RTRN))]
.iloc[1:day_chunk]
.std(ddof=dlta_degr_freedms)
* sqrt(time_factor),
]
for item in data.loc[:, cast("int", (self.label, ValueType.RTRN))].iloc[1:]:
prev = rawdata[-1]
rawdata.append(
sqrt(
square(item) * time_factor * (1 - lmbda) + square(prev) * lmbda,
),
)
return Series(
data=rawdata,
index=data.index,
name=(self.label, ValueType.EWMA),
dtype="float64",
)
def running_adjustment(
self: Self,
adjustment: float,
days_in_year: int = 365,
) -> Self:
"""Add or subtract a fee from the timeseries return.
Parameters
----------
adjustment: float
Fee to add or subtract
days_in_year: int, default: 365
The calculation divisor and
assumed number of days in a calendar year
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
if self.valuetype == ValueType.RTRN:
ra_df = self.tsdf.copy()
values = [1.0]
returns_input = True
else:
values = [cast("float", self.tsdf.iloc[0, 0])]
ra_df = self.tsdf.ffill().pct_change()
returns_input = False
ra_df = ra_df.dropna()
prev = self.first_idx
dates: list[dt.date] = [prev]
for idx, row in ra_df.iterrows():
dates.append(cast("dt.date", idx))
values.append(
values[-1]
* (
1
+ row.iloc[0]
+ adjustment * (cast("dt.date", idx) - prev).days / days_in_year
),
)
prev = cast("dt.date", idx)
self.tsdf = DataFrame(data=values, index=dates)
self.valuetype = ValueType.PRICE
self.tsdf.columns = MultiIndex.from_arrays(
[
[self.label],
[self.valuetype],
],
)
self.tsdf.index = Index(d.date() for d in DatetimeIndex(self.tsdf.index))
if returns_input:
self.value_to_ret()
return self
def set_new_label(
self: Self,
lvl_zero: str | None = None,
lvl_one: ValueType | None = None,
*,
delete_lvl_one: bool = False,
) -> Self:
"""Set the column labels of the .tsdf Pandas Dataframe.
Parameters
----------
lvl_zero: str, optional
New level zero label
lvl_one: ValueType, optional
New level one label
delete_lvl_one: bool, default: False
If True the level one label is deleted
Returns
-------
OpenTimeSeries
An OpenTimeSeries object
"""
if lvl_zero is None and lvl_one is None:
self.tsdf.columns = MultiIndex.from_arrays(
[[self.label], [self.valuetype]],
)
elif lvl_zero is not None and lvl_one is None:
self.tsdf.columns = MultiIndex.from_arrays([[lvl_zero], [self.valuetype]])
self.label = lvl_zero
elif lvl_zero is None and lvl_one is not None:
self.tsdf.columns = MultiIndex.from_arrays([[self.label], [lvl_one]])
self.valuetype = lvl_one
else:
self.tsdf.columns = MultiIndex.from_arrays([[lvl_zero], [lvl_one]])
self.label, self.valuetype = lvl_zero, cast("ValueType", lvl_one)
if delete_lvl_one:
self.tsdf.columns = self.tsdf.columns.droplevel(level=1)
return self
def timeseries_chain(
front: TypeOpenTimeSeries,
back: TypeOpenTimeSeries,
old_fee: float = 0.0,
) -> TypeOpenTimeSeries:
"""Chain two timeseries together.
The function assumes that the two series have at least one date in common.
Parameters
----------
front: TypeOpenTimeSeries
Earlier series to chain with
back: TypeOpenTimeSeries
Later series to chain with
old_fee: float, default: 0.0
Fee to apply to earlier series
Returns
-------
TypeOpenTimeSeries
An OpenTimeSeries object or a subclass thereof
"""
old = front.from_deepcopy()
old.running_adjustment(old_fee)
new = back.from_deepcopy()
idx = 0
first = new.tsdf.index[idx]
if old.last_idx < first:
msg = "Timeseries dates must overlap to allow them to be chained."
raise DateAlignmentError(msg)
while first not in old.tsdf.index:
idx += 1
first = new.tsdf.index[idx]
if first > old.tsdf.index[-1]:
msg = "Failed to find a matching date between series"
raise DateAlignmentError(msg)
dates: list[str] = [x.strftime("%Y-%m-%d") for x in old.tsdf.index if x < first]
old_values = old.tsdf.iloc[: len(dates), 0]
old_values = old_values.mul(
new.tsdf.iloc[:, 0].loc[first] / old.tsdf.iloc[:, 0].loc[first],
)
values = append(old_values, new.tsdf.iloc[:, 0])
dates.extend([x.strftime("%Y-%m-%d") for x in new.tsdf.index])
return back.__class__(
timeseries_id=new.timeseries_id,
instrument_id=new.instrument_id,
currency=new.currency,
dates=dates,
name=new.name,
label=new.name,
valuetype=new.valuetype,
values=list(values),
local_ccy=new.local_ccy,
tsdf=DataFrame(
data=values,
index=[d.date() for d in DatetimeIndex(dates)],
columns=[[new.label], [new.valuetype]],
dtype="float64",
),
)
def _check_if_none(item: Any) -> bool: # noqa: ANN401
"""Check if a variable is None or equivalent.
Parameters
----------
item : Any
variable to be checked
Returns
-------
bool
Answer to whether the variable is None or equivalent
"""
try:
return cast("bool", isnan(item))
except TypeError:
if item is None:
return True
return len(str(item)) == 0