forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tf2.py
259 lines (230 loc) · 7.19 KB
/
train_tf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
Script for training model on TensorFlow 2.0.
"""
import os
import logging
import argparse
import numpy as np
import random
import tensorflow as tf
from common.logger_utils import initialize_logging
from tensorflow2.tf2cv.model_provider import get_model
def parse_args():
"""
Parse python script parameters.
Returns
-------
ArgumentParser
Resulted args.
"""
parser = argparse.ArgumentParser(
description="Train a model for image classification (TensorFlow 2.0)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--data-dir",
type=str,
default="../imgclsmob_data/imagenet",
help="training and validation pictures to use")
parser.add_argument(
"--data-format",
type=str,
default="channels_last",
help="ordering of the dimensions in tensors. options are channels_last and channels_first")
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model from github repo")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters if not None")
parser.add_argument(
"--input-size",
type=int,
default=224,
help="size of the input for model")
parser.add_argument(
"--resize-inv-factor",
type=float,
default=0.875,
help="inverted ratio for input image crop")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--num-epochs",
type=int,
default=120,
help="number of training epochs")
parser.add_argument(
"--start-epoch",
type=int,
default=1,
help="starting epoch for resuming, default is 1 for new training")
parser.add_argument(
"--attempt",
type=int,
default=1,
help="current number of training")
parser.add_argument(
"--optimizer-name",
type=str,
default="nag",
help="optimizer name")
parser.add_argument(
"--lr",
type=float,
default=0.1,
help="learning rate")
parser.add_argument(
"--momentum",
type=float,
default=0.9,
help="momentum value for optimizer")
parser.add_argument(
"--wd",
type=float,
default=0.0001,
help="weight decay rate")
parser.add_argument(
"--log-interval",
type=int,
default=50,
help="number of batches to wait before logging")
parser.add_argument(
"--save-interval",
type=int,
default=4,
help="saving parameters epoch interval, best model will always be saved")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--seed",
type=int,
default=-1,
help="Random seed to be fixed")
parser.add_argument(
"--log-packages",
type=str,
default="tensorflow-gpu",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="tensorflow-gpu",
help="list of pip packages for logging")
args = parser.parse_args()
return args
def init_rand(seed):
if seed <= 0:
seed = np.random.randint(10000)
random.seed(seed)
np.random.seed(seed)
return seed
def main():
"""
Main body of script.
"""
args = parse_args()
args.seed = init_rand(seed=args.seed)
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
data_format = "channels_last"
tf.keras.backend.set_image_data_format(data_format)
model = args.model
net = get_model(model, data_format=data_format)
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
train_loss = tf.keras.metrics.Mean(name="train_loss")
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="train_accuracy")
test_loss = tf.keras.metrics.Mean(name="test_loss")
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="test_accuracy")
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = net(images)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, net.trainable_variables)
optimizer.apply_gradients(zip(gradients, net.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
@tf.function
def test_step(images, labels):
predictions = net(images)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
data_dir = args.data_dir
train_dir = os.path.join(data_dir, "train")
val_dir = os.path.join(data_dir, "val")
batch_size = args.batch_size
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=(1.0 / 255),
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
val_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=(1.0 / 255))
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(224, 224),
batch_size=batch_size,
class_mode="binary",
shuffle=True)
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(224, 224),
batch_size=batch_size,
class_mode="binary")
num_epochs = args.num_epochs
for epoch in range(num_epochs):
for images, labels in train_generator:
train_step(images, labels)
# break
for test_images, test_labels in val_generator:
test_step(test_images, test_labels)
# break
template = "Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}"
logging.info(template.format(
epoch + 1,
train_loss.result(),
train_accuracy.result() * 100,
test_loss.result(),
test_accuracy.result() * 100))
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
if __name__ == "__main__":
main()