-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathutils.py
71 lines (54 loc) · 1.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pickle
import cv2
import numpy as np
def imresize(img, size):
"""
Resize an image with cv2.INTER_LINEAR.
Parameters
----------
size: (width, height)
"""
return cv2.resize(img, size, cv2.INTER_LINEAR)
def load_pkl(path):
"""
Load pickle data.
Parameter
---------
path: Path to pickle file.
Return
------
Data in pickle file.
"""
with open(path, 'rb') as f:
data = pickle.load(f)
return data
class LowPassFilter:
def __init__(self):
self.prev_raw_value = None
self.prev_filtered_value = None
def process(self, value, alpha):
if self.prev_raw_value is None:
s = value
else:
s = alpha * value + (1.0 - alpha) * self.prev_filtered_value
self.prev_raw_value = value
self.prev_filtered_value = s
return s
class OneEuroFilter:
def __init__(self, mincutoff=1.0, beta=0.0, dcutoff=1.0, freq=30):
self.freq = freq
self.mincutoff = mincutoff
self.beta = beta
self.dcutoff = dcutoff
self.x_filter = LowPassFilter()
self.dx_filter = LowPassFilter()
def compute_alpha(self, cutoff):
te = 1.0 / self.freq
tau = 1.0 / (2 * np.pi * cutoff)
return 1.0 / (1.0 + tau / te)
def process(self, x):
prev_x = self.x_filter.prev_raw_value
dx = 0.0 if prev_x is None else (x - prev_x) * self.freq
edx = self.dx_filter.process(dx, self.compute_alpha(self.dcutoff))
cutoff = self.mincutoff + self.beta * np.abs(edx)
return self.x_filter.process(x, self.compute_alpha(cutoff))