-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVectorize.py
211 lines (173 loc) · 7.74 KB
/
Vectorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""Convert integer-based transcript to matrix of 300-dimensional vectors."""
import os
import glob
import json
import math
import datetime as dt
import tensorflow as tf
import numpy as np
import collections
import random
__author__ = ['Tim Woods',
'adventuresinML']
__copyright__ = 'Copyright (c) 2017 Tim Woods'
__license__ = 'MIT'
CLEANED_DIR = 'cleaned/'
def get_all_cleaned_scripts():
"""Hey now do the hustle. """
pwd = os.getcwd()
os.chdir(CLEANED_DIR)
all_files = glob.glob("*.txt")
os.chdir(pwd)
return all_files
def update_running_script(data, new_script):
for elem in new_script:
data.append(elem)
return data
num_embeddings = get_all_cleaned_scripts()
reverse_dictionary = json.load(open('lookup_dict.json', 'r'))
reverse_dictionary['0'] = 'UNK'
data = list()
for emb in num_embeddings:
a_script = json.load(open(CLEANED_DIR + emb, 'r'))
data = update_running_script(data, a_script)
dictionary = dict(zip(reverse_dictionary.values(), reverse_dictionary.keys()))
data_index = 0
# generate batch data
def generate_batch(data, batch_size, num_skips, skip_window):
"""Copied from GitHub account adventuresinML"""
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
context = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window input_word skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # input word at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window] # this is the input word
context[i * num_skips + j, 0] = buffer[target] # these are the context words
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
# Backtrack a little bit to avoid skipping words in the end of a batch
data_index = (data_index + len(data) - span) % len(data)
return batch, context
batch_size = 128
embedding_size = 300 # Dimension of the embedding vector.
skip_window = 2 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # Number of negative examples to sample.
vocabulary_size = 10001
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_context = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the softmax
weights = tf.Variable(
tf.truncated_normal([embedding_size, vocabulary_size],
stddev=1.0 / math.sqrt(embedding_size)))
biases = tf.Variable(tf.zeros([vocabulary_size]))
hidden_out = tf.transpose(tf.matmul(tf.transpose(weights), tf.transpose(embed))) + biases
# convert train_context to a one-hot format
train_one_hot = tf.one_hot(train_context, vocabulary_size)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
nce_loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_context,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(nce_loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
def run(graph, num_steps):
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print('Initialized')
average_loss = 0
for step in range(num_steps):
batch_inputs, batch_context = generate_batch(data,
batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_context: batch_context}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, cross_entropy], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step ', step, ': ', average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[str(valid_examples[i])]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[str(nearest[k])]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
num_steps = 100
softmax_start_time = dt.datetime.now()
run(graph, num_steps=num_steps)
softmax_end_time = dt.datetime.now()
print("Softmax method took {} minutes to run 100 iterations".format((softmax_end_time-softmax_start_time).total_seconds()))
with graph.as_default():
# Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
nce_loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_context,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(nce_loss)
# Add variable initializer.
init = tf.global_variables_initializer()
num_steps = 50000
nce_start_time = dt.datetime.now()
run(graph, num_steps)
nce_end_time = dt.datetime.now()
print("NCE method took {} minutes to run 100 iterations".format((nce_end_time-nce_start_time).total_seconds()))