forked from DataXujing/detr_transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_img.py
139 lines (99 loc) · 4.04 KB
/
inference_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
'''
detr 单张图片的推断
'''
import cv2
from PIL import Image
import numpy as np
import os
import time
import torch
from torch import nn
# from torchvision.models import resnet50
import torchvision.transforms as T
from hubconf import detr_resnet50, detr_resnet50_panoptic
torch.set_grad_enabled(False)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("[INFO] 当前使用{}做推断".format(device))
# 图像数据处理
transform = T.Compose([
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 将xywh转xyxy
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
# 将0-1映射到图像
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b.cpu().numpy()
b = b * np.array([img_w, img_h, img_w, img_h], dtype=np.float32)
return b
# plot box by opencv
def plot_result(pil_img, prob, boxes,save_name=None,imshow=False, imwrite=False):
LABEL = ["NA","QP","NY","QG"]
len(prob)
opencvImage = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
# print(prob)
# print("-------------------------------")
# print(boxes)
if len(prob) == 0:
print("[INFO] NO box detect !!! ")
if imwrite:
if not os.path.exists("./result/pred_no"):
os.makedirs("./result/pred_no")
cv2.imwrite(os.path.join("./result/pred_no",save_name),opencvImage)
return
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes):
cl = p.argmax()
label_text = '{}: {}%'.format(LABEL[cl],round(p[cl]*100,2))
cv2.rectangle(opencvImage, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 255, 0), 2)
cv2.putText(opencvImage, label_text,(int(xmin)+10, int(ymin)+30), cv2.FONT_HERSHEY_SIMPLEX, 1,
(255, 255, 0), 2)
if imshow:
cv2.imshow('detect', opencvImage)
cv2.waitKey(0)
if imwrite:
if not os.path.exists("./result/pred"):
os.makedirs('./result/pred')
cv2.imwrite('./result/pred/{}'.format(save_name), opencvImage)
# 单张图像的推断
def detect(im, model, transform,prob_threshold=0.7):
# mean-std normalize the input image (batch-size: 1)
img = transform(im).unsqueeze(0)
# demo model only support by default images with aspect ratio between 0.5 and 2
# if you want to use images with an aspect ratio outside this range
# rescale your image so that the maximum size is at most 1333 for best results
assert img.shape[-2] <= 1600 and img.shape[-1] <= 1600, 'demo model only supports images up to 1600 pixels on each side'
# propagate through the model
img = img.to(device)
start = time.time()
outputs = model(img)
# keep only predictions with 0.7+ confidence
# print(outputs['pred_logits'].softmax(-1)[0, :, :-1])
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > prob_threshold
end = time.time()
probas = probas.cpu().detach().numpy()
keep = keep.cpu().detach().numpy()
# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)
return probas[keep], bboxes_scaled, end-start
if __name__ == "__main__":
# detr = DETRdemo(num_classes=3+1)
detr = detr_resnet50(pretrained=False,num_classes=3+1).eval() # <------这里类别需要+1
state_dict = torch.load('outputs/checkpoint.pth') # <-----------修改加载模型的路径
detr.load_state_dict(state_dict["model"])
detr.to(device)
files = os.listdir("./myData/test")
for file in files:
img_path = os.path.join("./myData/test",file)
im = Image.open(img_path)
scores, boxes, waste_time = detect(im, detr, transform)
# print(scores)
plot_result(im, scores, boxes,save_name=file,imshow=False, imwrite=True)
print("[INFO] {} time: {} done!!!".format(file,waste_time))