-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_mask.py
258 lines (219 loc) · 10.2 KB
/
generate_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import cv2
import sys
import torch
import pickle
import platform
import numpy as np
from tqdm import tqdm
from glob import glob
from PIL import Image
from alisuretool.Tools import Tools
sys.path.append("../segment_anything")
from torch.utils.data import Dataset
import matplotlib.pyplot as plt
from segment_anything import sam_model_registry
from extractmasks.my_utils import my_masked_average_pooling
from extractmasks.my_data.utils_rle import mask_to_rle_pytorch, rle_to_mask
from extractmasks.my_automatic_mask_generator2 import SamAutomaticMaskGenerator
from extractmasks.my_transforms import MyResizeLongestSide
class Config(object):
dataset_name = "Pascal"
use_gpu = True
gpu_id = "0"
model_type = "vit_b"
target_size = 50
crop_n_layers = 1
points_per_side = 32
points_per_batch = 8
stability_score_thresh = 0.9
data_root = "./dataset/VOC2012/JPEGImages"
target_root = './test'
data_sam_mask_name = "sam_mask_{}_t{}_p{}_s{}".format(
model_type, target_size, points_per_side, 50) #int(stability_score_thresh * 100))
# need to download from https://github.com/facebookresearch/segment-anything#model-checkpoints
pretrain_checkpoint = "../pretrained_model/SAM/sam_vit_b_01ec64.pth"
pass
@staticmethod
def gpu_setup(use_gpu, gpu_id):
if torch.cuda.is_available() and use_gpu:
Tools.print()
Tools.print('Cuda available with GPU: {}'.format(torch.cuda.get_device_name(0)))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
device = torch.device("cuda:{}".format(gpu_id))
else:
Tools.print()
Tools.print('Cuda not available')
device = torch.device("cpu")
return device
pass
class SAIDAll(Dataset):
def __init__(self, split=None):
self.all_image = sorted(glob(os.path.join(Config.data_root, "*.jpg")))
#self.all_label = sorted(glob(os.path.join(Config.data_root, "groundtruth", "*.png")))
#self._check()
pass
def _check(self):
all_image = [os.path.basename(os.path.splitext(one)[0]) for one in self.all_image]
all_label = [os.path.basename(os.path.splitext(one)[0]) for one in self.all_label]
for one, two in zip(all_image, all_label):
assert one in two
pass
pass
def __len__(self):
return len(self.all_image)
def read_img(self, image_path):
return Image.open(image_path)
def __getitem__(self, idx):
image_path = self.all_image[idx]
image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
# label_path = self.all_label[idx]
# label = cv2.cvtColor(cv2.imread(label_path), cv2.COLOR_BGR2GRAY)
return {'image': image,
'image_path': image_path}
pass
class RunnerSAMForExtractingMask(object):
def __init__(self, is_dao=True, split="train"):
self.is_dao = is_dao
self.split = split
self.target_size = Config.target_size
self.device = Config.gpu_setup(use_gpu=Config.use_gpu, gpu_id=Config.gpu_id)
self.sam = sam_model_registry[Config.model_type](checkpoint=Config.pretrain_checkpoint).to(self.device)
self.mask_generator = SamAutomaticMaskGenerator(
self.sam, points_per_side=Config.points_per_side,
points_per_batch=Config.points_per_batch,
stability_score_thresh=Config.stability_score_thresh,
crop_n_layers=2,
crop_n_points_downscale_factor = 2)
self.dataset = SAIDAll(split=self.split)
pass
@torch.no_grad()
def runner_1_extracted_mask(self, result_mask_name, mask_num=40, target_size=50):
for i in tqdm(range(len(self.dataset))):
# 读取数据
which = (len(self.dataset) - i - 1) if self.is_dao else i # 倒着提取或者顺着提取
data_one = self.dataset.__getitem__(which)
image, image_path = data_one["image"], data_one["image_path"] #
#label, label_path = data_one["label"], data_one["label_path"]
type = image_path.split('/')[-2]
# 是否已经存在特征
now_name = os.path.splitext(os.path.basename(image_path))[0] # 1
result_mask_file = Tools.new_dir(os.path.join(
Config.target_root, self.split, result_mask_name, "{}.pkl".format(now_name)))
if os.path.exists(result_mask_file):
Tools.print("File exist: {}".format(result_mask_file))
continue
# 提取特征
with torch.no_grad():
masks = self.mask_generator.generate(image)
masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
for one in masks:
one["segmentation"] = mask_to_rle_pytorch(torch.tensor(one["segmentation"][None, :]))[0]
pass
masks, masks_target = self._deal_feature(
masks=masks, mask_num=mask_num, target_size=target_size)
now_data = {"input_size": (1024, 1024), "image_size": image.shape[:2],
# "image": image, "image_name": now_name,
"label": None,
# "label_target": MyResizeLongestSide(
# target_length=50).apply_mask(label, is_pad=True),
"masks_target": masks_target, "masks": masks}
# 保存结果
with open(result_mask_file, "wb") as f:
pickle.dump(now_data, f)
pass
torch.cuda.empty_cache()
pass
pass
@classmethod
def _deal_feature(cls, masks, mask_num=40, target_size=50):
########################################################################
for mask in masks:
mask["segmentation"] = rle_to_mask(mask["segmentation"])
pass
masks = cls._check_mask(masks, mask_num=mask_num)
masks_target = cls._transform_to_target_size(masks=masks, target_size=target_size)
########################################################################
########################################################################
masks = np.concatenate([mask_one["segmentation"][np.newaxis, :, :]
for mask_one in masks], axis=0)
masks_target = np.concatenate([mask_one["segmentation"][np.newaxis, :, :]
for mask_one in masks_target], axis=0)
########################################################################
masks = mask_to_rle_pytorch(torch.tensor(masks))
masks_target = mask_to_rle_pytorch(torch.tensor(masks_target))
return masks, masks_target
@staticmethod
def _transform_to_target_size(masks, target_size):
transform_mask = MyResizeLongestSide(target_length=target_size)
mask_target = []
for mask in masks:
current_mask = {}
size_x, size_y = mask["crop_box"][-2], mask["crop_box"][-1]
mask["segmentation"] = np.asarray(mask["segmentation"], dtype=np.uint8)
current_mask["segmentation"] = transform_mask.apply_mask(mask["segmentation"], is_pad=True)
current_mask["area"] = np.sum(current_mask["segmentation"])
current_mask["bbox"] = transform_mask.apply_xs(mask["bbox"], size_x=size_x, size_y=size_y)
current_mask["crop_box"] = transform_mask.apply_xs(mask["crop_box"], size_x=size_x, size_y=size_y)
current_mask["point_coords"] = [transform_mask.apply_xs(one, size_x=size_x, size_y=size_y)
for one in mask["point_coords"]]
current_mask["predicted_iou"] = mask["predicted_iou"]
current_mask["stability_score"] = mask["stability_score"]
mask_target.append(current_mask)
pass
return mask_target
@staticmethod
def _check_mask(masks, mask_num):
if len(masks) > mask_num:
masks = masks[:mask_num]
else:
if len(masks) > 0:
while len(masks) < mask_num:
current_mask = {
"segmentation": np.zeros_like(masks[0]["segmentation"]),
"area": 0,
"bbox": [0, 0, 0, 0],
"predicted_iou": 0.0,
"point_coords": [[0.0, 0.0]],
"stability_score": 0,
"crop_box": masks[0]["crop_box"],
"ratio": 0.0,
}
masks.append(current_mask)
pass
pass
return masks
@staticmethod
def runner_2_vis_mask(mask_path, result_path):
if os.path.exists(mask_path):
try:
with open(mask_path, "rb") as f:
result = pickle.load(f)
image = result["image"]
label = result["label"]
masks = result["masks"]
result_path = Tools.new_dir(result_path)
Image.fromarray(np.asarray(image, dtype=np.uint8)).save(
os.path.join(result_path, "0_image.jpg"))
Image.fromarray(np.asarray(label * (255 // 15), dtype=np.uint8)).save(
os.path.join(result_path, "0_label.png"))
for index, ann in enumerate(masks):
resul_file = os.path.join(result_path, f"{index+1}.bmp")
m = rle_to_mask(ann)
Image.fromarray(np.asarray(np.asarray(m, dtype=np.int32) * 255,
dtype=np.uint8)).save(resul_file)
pass
pass
except Exception:
Tools.print(f"Error file {mask_path}")
else:
Tools.print(f"No file {mask_path}")
pass
pass
if __name__ == '__main__':
runner = RunnerSAMForExtractingMask(is_dao=False, split="train")
runner.runner_1_extracted_mask(result_mask_name=Config.data_sam_mask_name)
# runner = RunnerSAMForExtractingMask(is_dao=False, split="val")
# runner.runner_1_extracted_mask(result_mask_name=Config.data_sam_mask_name)
pass