forked from antononcube/MathematicaForPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMosaicPlot.m
531 lines (417 loc) · 22.4 KB
/
MosaicPlot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
(*
Mosaic plot for data visualization implementation in Mathematica
Copyright (C) 2014-2018 Anton Antonov
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Written by Anton Antonov,
antononcube @ gmail . com,
Windermere, Florida, USA.
*)
(*
Mathematica is (C) Copyright 1988-2016 Wolfram Research, Inc.
Protected by copyright law and international treaties.
Unauthorized reproduction or distribution subject to severe civil
and criminal penalties.
Mathematica is a registered trademark of Wolfram Research, Inc.
*)
(* :Title: MosaicPlot *)
(* :Context: MosaicPlot` *)
(* :Author: Anton Antonov *)
(* :Date: 2018-04-29 *) (* Date of the update of the 2014 implementation.*)
(* :Package Version: 1.0 *)
(* :Mathematica Version: 11.3 *)
(*
This package defines the function MosaicPlot that summarizes the
conditional probabilities of co-occurrence of the categorical values
in a Dataset object or a list of records of the same length.
(The list of records isassumed to be a full array and the columns to
represent categorical values.) Note, that if a column is numerical
but has a small number of different values it can be seen as categorical.
Descriptions of the mosaic plots can be found in books about
programming and statistics with R. See for example "R in Action" by
Robert Kabacoff.
See also the document in "Mosaic plots for data visualization" at
https://github.com/antononcube/MathematicaForPrediction/tree/master/Documentation .
OPTIONS:
MosaicPlot has options for adjusting the gap between the rectangles,
the style of the labels, the rotation of the labels, and from which
side to start the rectangle splitting, and the color of the
rectangles. MosaicPlot also takes all the options of
Graphics. (Because MosaicPlot is implemented with Graphics).
The mosaic plot is made within the rectangle {{0,0},{1,1}}. Using
the options PlotRange and Frame one make a frame that encompasses
the rotated labels.
MosaicPlot takes the following options:
{"ColumnNames" -> None, "ColumnNamesOffset" -> 0.05,
"ExpandLastColumn" -> False, "FirstAxis" -> "y", "Gap" -> 0.02,
"GapFactor" -> 0.5, "LabelRotation" -> {{1, 0}, {0, 1}}, "LabelStyle" -> {},
"Tooltips" -> True, "ZeroProbability" -> 0.001, ColorRules -> Automatic}
In addition, MosaicPlot takes all the options of Graphics.
The options are explained below.
(o) "ExpandLastColumn" -- visualizing categorical columns + a numerical column
If the last data column is numerical then MosaicPlot can use it
as pre-computed contingency statistics. This functionality is
specified with the option "ExpandLastColumn"->True.
sData = {{"blond", "blue", 3}, {"blond", "brown", 1},
{"dark", "blue", 1}, {"dark", "brown", 4}};
MosaicPlot[sData, "ExpandLastColumn" -> True]
(o) "Gap" and "GapFactor" -- controlling the size of the gap between the rectangles
The size of the gaps between the rectangles is controlled with
the options "Gap" and "GapFactor". The value "Gap" specifies the
size of the gap between the rectangles derived from the first
column. MosaicPlot splits the data into rectangles
recursively. In order to derive the gaps for the subsequent data
column the values of "Gap" and "GapFactor" are multiplied. In
other words, if MosaicPlot is given the options
{"Gap"->g,"GapFactor"->f} then the gap between the rectangles
corresponding to the i-th column have the size is g f^(i-1).
(o) "LabelRotation" and "LabelStyle" -- contingency values labels
The labels derived from the distinct values (levels) of each
column of the data can be rotated and given style options.
The option "LabelRotation" takes directional specification for
Text (the fourth argument of Text). The option "LabelStyle"
takes options and arguments for the function Style.
MosaicPlot[censusData[[All, {8, 14}]], "LabelRotation" -> {{1, 0}, {1, 1}},
"LabelStyle" -> {Bold, Red, FontFamily -> "Times"}]
(o) "ColumnNames" and "ColumnNamesOffset" -- labels for categorical variables
The names of the data columns (data's variables) are specified
with the option "ColumnNames". (The list of names given to
"ColumnNames" can be formatted with Style.) The distance of the
column names from the rectangles is specified with the option
"ColumnNamesOffset".
(o) "FirstAxis" -- start of the rectangle splitting
The starting axis of the data splitting is specified by "FirstAxis".
MosaicPlot[censusData[[All, {9, 14}]], "FirstAxis" -> #] & /@ {"x", "y"}
(o) "Tooltips" -- tooltips with exact contingency statistics
MosaicPlot has an interactive feature using Tooltip that gives a
table with the exact co-occurrence (contingency) values when
hovering with the mouse over the rectangles. The option
"Tooltips" takes the values True or False.
(o) Visualizing non-existing contingencies ("ZeroProbability")
The non-existing contingencies have to be represented in the
mosaic plot. MosaicPlot uses very thin rectangles for them and
the size of these rectangles is controlled with the option
"ZeroProbability".
(o) Coloring of the rectangles (ColorRules)
The rectangles can be colored using the option ColorRules which
specifies how the colors of the rectangles are determined from
the indices of the data columns.
More precisely, the values of the option ColorRules should be a
list of rules, {i1->c1, i2->c2,...}, matching the form
{(_Integer->(_RGBColor|_GrayLevel))..}.
The column indices Subscript[i, k] can be negative (-1 meaning the last column).
If coloring for only one column index is specified the value of
ColorRules can be of the form
{_Integer->{(_RGBColor|_GrayLevel)..}}.
The colors are used with Blend in order to color the rectangles
according to the order of the unique values of the specified
data columns.
The default value for ColorRules is Automatic. When Automatic is
given to ColorRules, MosaicPlot finds the data column with the
largest number of unique values and colors them according to
their order using ColorData[7,"ColorList"].
The grid of plots below shows mosaic plots of the same data with
different values for the option ColorRules (given as plot
labels).
sData = Table[{RandomChoice[{1, 4, 5, 2} -> {"a", "b", "c", "d"}],
RandomChoice[{4, 1, 5} -> {"A", "B", "C"}],
RandomChoice[{1, 2} -> {"1", "2"}]}, {60}];
t = MosaicPlot[sData, PlotLabel -> If[TrueQ[# === None], "None", #],
ColorRules -> ReleaseHold[#], "Gap" -> 0.025, "GapFactor" -> 0.6,
ImageSize -> 200] & /@ {{}, None,
Automatic, {_ -> GrayLevel[0.7]},
HoldForm[{1 -> Green, 2 -> Blue, 3 -> Red}],
HoldForm[{-2 -> Blue, -1 -> Red}], HoldForm[{2 -> Blue}],
HoldForm[{2 -> {Pink, Blue}}],
HoldForm[{2 -> ColorData[11, "ColorList"]}]};
Grid[ArrayReshape[t, {3, 3}, ""], Dividers -> All]
TIPS: * When the number of unique values in a categorical column is
large the gaps between the rectangles might "eat" the recntagles
areas. Use smaller gap size for the option "Gap".
TODO
1. Pearson chi-squared correlation coloring. (After I
implemented the option ColorRules this TODO item has low priority.)
2. DONE Make MosaicPlot work with Dataset objects.
*)
(*
2018-04-29: Updated the package to use the re-implementation of TriesWithFrequencies.m through Association.
*)
BeginPackage["MosaicPlot`"];
MosaicPlot::usage = "MosaicPlot[rarr] makes a mosaic plot that summarizes the conditional probabilities of categorical \
values co-occurrence in a list of records of the same length (a full array or dataset). MosaicPlot has options for \
adjusting the gap between the rectangles, the style of the labels, the rotation of the labels, and from which side to \
start the rectangle splitting. MosaicPlot also takes all the options of Graphics.";
MosaicPlotTooltipTable::usage = "MosaicPlotTriePathTable[triePath:{{catVal_?AtomQ,prob_?NumberQ}..}] makes a table \
of conditional probabilities from a trie path (suitable to be the second argument of Tooltip.)";
Begin["`Private`"];
If[Length[DownValues[TriesWithFrequencies`TrieMerge]] == 0,
Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/TriesWithFrequencies.m"]
];
Clear[TrieUniqueRecords];
TrieUniqueRecords[data_?ArrayQ] :=
Block[{uniqCVals, zeroRecs, res},
uniqCVals = Table[Union[data[[All, i]]], {i, Dimensions[data][[2]]}];
zeroRecs = Flatten[Outer[List, Sequence @@ uniqCVals], Length[uniqCVals] - 1];
res = TriesWithFrequencies`TrieCreate[zeroRecs];
Replace[res, x_Association :> Join[x, <|TriesWithFrequencies`$TrieValue -> 0|>], Infinity]
];
Clear[TrieAddMissingValues];
TrieAddMissingValues[trie_?TriesWithFrequencies`TrieQ, data_?ArrayQ] :=
TriesWithFrequencies`TrieMerge[trie, TrieUniqueRecords[data]];
Clear[TrieSortNodes];
TrieSortNodes[trie_?TriesWithFrequencies`TrieQ] :=
Replace[trie, x_Association :> Sort[x], Infinity];
TrieSortNodes[trie_] :=
If[Length[trie] == 1, trie,
Join[{trie[[1]]}, TrieSortNodes /@ SortBy[Rest[trie], #[[1, 1]] &]]
];
Clear[TriePruneNumericalLevel];
TriePruneNumericalLevel[trie_?TriesWithFrequencies`TrieQ, pruneLevel_Integer] :=
Association@TriePruneNumericalLevel[First@Normal@trie, pruneLevel, 1];
TriePruneNumericalLevel[trie_?TriesWithFrequencies`TrieRuleQ, pruneLevel_Integer, level_Integer] :=
Block[{t},
With[{$TV = TriesWithFrequencies`$TrieValue},
Which[
Length[trie[[2]]] == 1 || pruneLevel < level,
trie,
pruneLevel == level && VectorQ[Keys@KeyDrop[trie[[2]], $TV], NumberQ],
trie[[1]] -> <|$TV -> Total @ Keys @ KeyDrop[trie[[2]], $TV]|>,
True,
t =
Association@
KeyValueMap[
TriePruneNumericalLevel[#1 -> #2, pruneLevel, level + 1] &,
KeyDrop[trie[[2]], $TV]
];
trie[[1]] -> Join[t, <|$TV -> Total @ Map[#[$TV] &, Values[t]]|>]
]
]
];
Clear[RectanglePartition];
Options[RectanglePartition] = {"Gap" -> 0.01, "ZeroWidth" -> 0.001, "SortNodes" -> False};
RectanglePartition[trie_,
Rectangle[{x0_?NumberQ, y0_?NumberQ}, {x1_?NumberQ, y1_?NumberQ}],
axis : ("x" | "y"), opts : OptionsPattern[]] :=
Block[{ps, aps, xs, ys, gap = OptionValue["Gap"],
zwidth = OptionValue["ZeroWidth"], sortQ = OptionValue["SortNodes"]},
If[TrueQ[sortQ],
ps = #[[1, 2]] & /@ SortBy[Rest[trie], #[[1]] &],
ps = #[[1, 2]] & /@ Rest[trie]
];
aps = FoldList[Plus, 0, ps /. (0 -> zwidth)];
If[axis == "x",
Map[Rectangle[{#[[1]], y0}, {#[[2]], y1}] &,
MapIndexed[#1 + (#2[[1]] - 1) {gap, gap} &,
Partition[Rescale[aps, {0, If[aps[[-1]] > 1, aps[[-1]], 1]}, {x0, x1 - gap (Length[ps] - 1)}], 2, 1]]],
Map[Rectangle[{x0, #[[1]]}, {x1, #[[2]]}] &,
MapIndexed[#1 + (#2[[1]] - 1) {gap, gap} &,
Partition[Rescale[aps, {0, If[aps[[-1]] > 1, aps[[-1]], 1]}, {y0, y1 - gap (Length[ps] - 1)}], 2, 1]]]
]
];
(* The original version of the function TrieMosaicRec gives much better idea of what it does:
Clear[TrieMosaicRec]
TrieMosaicRec[trie_, r_Rectangle, axis : ("x" | "y"), gap_?NumberQ, zwidth_?NumberQ] :=
Block[{rs},
If[Length[trie] == 1 || r[[2, 1]] - r[[1, 1]] <= gap || r[[2, 2]] - r[[1, 2]] <= gap, r,
rs = RectanglePartition[trie, r, axis, "Gap" -> gap, "ZeroWidth" -> zwidth];
MapThread[TrieMosaicRec[#1, #2, axis /. {"x" -> "y", "y" -> "x"}, gap/2, zwidth] &, {Rest[trie], rs}, 1]
]
];
*)
Clear[MosaicPlotTooltipTable, MakeTooltipTable];
MosaicPlotTooltipTable[triePath_] := MakeTooltipTable[triePath];
MakeTooltipTable[triePath_] :=
Block[{t},
t =
DeleteCases[
Join @@ Table[{triePath[[1 ;; i, 1]], triePath[[i + 1 ;; j, 1]],
Apply[Times, triePath[[i ;; j, 2]]]/triePath[[i, 2]]},
{j, 2, Length[triePath]}, {i, 1, j - 1}],
{}, 3];
t = Map[{If[Length[#[[1]]] == 0, "",
DisplayForm[
FormBox[RowBox[
Riffle[If[StringQ[#], "\"" <> # <> "\"", #] & /@ #[[1]],
"\[Intersection]"]], TraditionalForm]]],
DisplayForm[
FormBox[RowBox[
Riffle[If[StringQ[#], "\"" <> # <> "\"", #] & /@ #[[2]],
"\[Intersection]"]], TraditionalForm]], #[[3]]} &, t];
Grid[Prepend[t, Style[#, Blue, FontFamily -> "Times"] & /@ {"condition", "event", "probability"}], Alignment -> Left,
Dividers -> {None, {False, True, False}}]
];
SIDEChangeRules = {Left -> Top, Top -> Right, Right -> Bottom, Bottom -> Left};
SIDEToCoordinateRules = {Left -> 0, Right -> 1, Top -> 1, Bottom -> 0};
Clear[TrieMosaicRec];
TrieMosaicRec[trie_, triePath_, posPath_, r_Rectangle,
axis : ("x" | "y"), side : (Top | Bottom | Left | Right),
gap_?NumberQ, gapFactor_?NumberQ,
zwidth_?NumberQ, {xLabelRotation_, yLabelRotation_}, labelStyle_,
addTooltipQ_, colors_, colorInds_] :=
Block[{rs, t, c = side /. SIDEToCoordinateRules},
If[Length[trie] == 1 || r[[2, 1]] - r[[1, 1]] <= gap || r[[2, 2]] - r[[1, 2]] <= gap,
t = If[TrueQ[addTooltipQ], Tooltip[r, MakeTooltipTable[Append[triePath, trie[[1]]]]], r];
If[Length[colorInds] == 0, t,
{Which[
Max[Abs[colorInds]] > Length[posPath], GrayLevel[0.7],
Length[colorInds] == 1 && Length[posPath] == 1 && ! ListQ[colors[[1]]], colors[[1]],
Length[colorInds] == 1 && ! ListQ[colors[[1]]], Blend[{White, colors[[1]]}, posPath[[colorInds[[1]]]]],
Length[colorInds] == 1,
Blend[colors[[1]], posPath[[colorInds[[1]]]]],
True, Blend[colors, posPath[[colorInds]]]
], t}
],
(*ELSE*)
rs = RectanglePartition[trie, r, axis, "Gap" -> gap, "ZeroWidth" -> zwidth];
If[axis == "x", t = Select[rs, #[[1, 2]] == c || #[[2, 2]] == c &];
If[Length[t] == Length[rs],
AppendTo[LABELS,
MapThread[Text[Style[#1, labelStyle], {Mean[{#2[[1, 1]], #2[[2, 1]]}], c}, If[side === Top, -{0, 2}, {0, 2}],
xLabelRotation] &, {Rest[trie][[All, 1, 1]], rs}]]],
(*ELSE*)
t = Select[rs, #[[1, 1]] == c || #[[2, 1]] == c &];
If[Length[t] == Length[rs],
AppendTo[LABELS,
MapThread[Text[Style[#1, labelStyle], {c, Mean[{#2[[1, 2]], #2[[2, 2]]}]}, If[side === Left, -{0, 2}, {0, 2}],
yLabelRotation] &, {Rest[trie][[All, 1, 1]], rs}]]]
];
MapThread[
TrieMosaicRec[#1, Append[triePath, trie[[1]]], Append[posPath, #3], #2,
axis /. {"x" -> "y", "y" -> "x"},
side /. SIDEChangeRules, gap*gapFactor, gapFactor,
zwidth, {xLabelRotation, yLabelRotation}, labelStyle,
addTooltipQ, colors, colorInds] &, {Rest[trie], rs, Range[Length[rs]]/Length[rs]}, 1]
]
];
MosaicPlot::nargs = "MosaicPlot takes as an argument a full array (that is list of records) or a dataset.";
MosaicPlot::ncno = "The value of the option \"ColumnNamesOffset\" should be a number.";
MosaicPlot::npnum = "The value of the option `1` should be a positive number.";
MosaicPlot::nfax = "The value of the option \"FirstAxis\" should be either \"x\" or \"y\".";
MosaicPlot::nlr = "The value of the option \"LabelRotation\" should be a pair of numbers or two pairs of numbers.";
MosaicPlot::ncr = "The value of the option ColorRules should be a list of rules of the form columnIndex->color.\
If coloring for only one column index is specified its rule can be of the form colorIndex->{color1,color2,...} .";
Clear[MosaicPlot];
Options[MosaicPlot] =
Join[{"ColumnNames" -> None, "ColumnNamesOffset"->0.05, "Gap" -> 0.02, "GapFactor" -> 0.5,
"ZeroProbability" -> 0.001, "FirstAxis" -> "y",
"LabelRotation" -> {{1, 0}, {0, 1}}, "LabelStyle" -> {},
"ExpandLastColumn" -> False, "Tooltips"->True, ColorRules -> Automatic}, Options[Graphics]];
MosaicPlot[dataRecords_, opts : OptionsPattern[] ] :=
Block[{dsetColNames, columnNames},
columnNames = OptionValue[MosaicPlot, "ColumnNames"];
dsetColNames = Normal[ Keys@First@dataRecords ];
If[ TrueQ[columnNames === None || Length[Intersection[ columnNames, dsetColNames]] == 0 ],
MosaicPlot[ Values@Normal@ dataRecords, Sequence @@ Prepend[ {opts}, "ColumnNames"->dsetColNames] ],
(* ELSE *)
dsetColNames = Intersection[ columnNames, dsetColNames];
MosaicPlot[ Values@Normal@ dataRecords[All, columnNames], Sequence @@ Prepend[ {opts}, "ColumnNames"->dsetColNames] ]
]
]/;TrueQ[Head[dataRecords]===Dataset];
MosaicPlot[dataRecords_, opts : OptionsPattern[]] :=
Block[{trie, rs,
gap = OptionValue[MosaicPlot, "Gap"],
gapFactor = OptionValue[MosaicPlot, "GapFactor"],
zwidth = OptionValue[MosaicPlot, "ZeroProbability"],
firstAxis = OptionValue[MosaicPlot, "FirstAxis"],
labelRotation = OptionValue[MosaicPlot, "LabelRotation"],
labelStyle = OptionValue[MosaicPlot, "LabelStyle"],
columnNames = OptionValue[MosaicPlot, "ColumnNames"],
frameLabelOffset = OptionValue[MosaicPlot, "ColumnNamesOffset"],
expandLastColumnQ = TrueQ[OptionValue[MosaicPlot, "ExpandLastColumn"]],
addTooltipQ = TrueQ[OptionValue[MosaicPlot, "Tooltips"]],
colorRules = OptionValue[MosaicPlot, ColorRules],
LABELS = {}, frameLabels, frameLabelCoords, frameLabelRotation,
colors, colorInds, t, nvals},
If[! (ArrayQ[dataRecords] && Length[Dimensions[dataRecords]]==2),
Message[MosaicPlot::nargs];
Return[{}]
];
If[! TrueQ[ NumberQ[gap] && gap > 0 ],
Message[MosaicPlot::npnum, "\"Gap\""];
gap = 0.02;
];
If[! TrueQ[ NumberQ[gapFactor] && gapFactor > 0 ],
Message[MosaicPlot::npnum, "\"GapFactor\""];
gapFactor = 0.5;
];
If[! TrueQ[ NumberQ[zwidth] && zwidth > 0 ],
Message[MosaicPlot::npnum, "\"ZeroProbability\""];
zwidth = 0.001;
];
If[! (TrueQ[colorRules === None] || TrueQ[colorRules === Automatic] ||
MatchQ[colorRules, {_Integer -> {(_RGBColor | _GrayLevel) ..}} | {(_Integer -> (_RGBColor | _GrayLevel)) | (Rule[Blank[], (_RGBColor | _GrayLevel)]) ...}]),
Message[MosaicPlot::"ncr"]
];
Which[
TrueQ[firstAxis == "x" || firstAxis == "X" || firstAxis == "Top"], firstAxis = "x",
TrueQ[firstAxis == "y" || firstAxis == "Y" || firstAxis == "Left"], firstAxis = "y",
True,
Message[MosaicPlot::nfax];
firstAxis = "y"
];
If[VectorQ[labelRotation, NumberQ] && Length[labelRotation] == 2, labelRotation = {labelRotation, labelRotation}];
If[TrueQ[labelRotation === None], labelRotation = {{1, 0}, {1, 0}}];
If[! (MatrixQ[labelRotation, NumberQ] && Dimensions[labelRotation] == {2, 2}),
Message[MosaicPlot::nlr];
labelRotation = {{1, 0}, {0, 1}};
];
If[TrueQ[labelStyle === None], labelStyle = {}];
If[! NumberQ[frameLabelOffset],
Message[MosaicPlot::ncno];
frameLabelOffset = 0.05;
];
If[Length[columnNames] == 0,
frameLabels = {},
(*ELSE*)
frameLabelCoords = {{-frameLabelOffset, 0.5}, {0.5, 1 + frameLabelOffset}, {1 + frameLabelOffset, 0.5}, {0.5, -frameLabelOffset}};
frameLabelRotation = {{0, 1}, {1, 0}, {0, -1}, {1, 0}};
If[firstAxis == "x",
frameLabelCoords = RotateLeft[frameLabelCoords, 1];
frameLabelRotation = RotateLeft[frameLabelRotation, 1];
];
frameLabels = MapThread[Text[#1, #2, {0, 0}, #3] &,
{If[Length[columnNames] >= 4, columnNames[[1 ;; 4]], Join[columnNames, Table["", {4 - Length[columnNames]}]]], frameLabelCoords, frameLabelRotation}];
frameLabels = Select[frameLabels, !TrueQ[#[[1]]==""]&];
];
If[TrueQ[colorRules === None], colorRules = {}];
If[! TrueQ[colorRules === Automatic],
colorRules =
Map[If[NumberQ[#[[1]]] && #[[1]] < 1, (Dimensions[dataRecords][[2]] + #[[1]] + 1) -> #[[2]], #] &, colorRules];
colors = Map[{#, # /. colorRules} &, Range[1, Dimensions[dataRecords][[2]]]];
colors = DeleteCases[colors, {_Integer, _Integer}];
If[Length[colors] == 0, colorInds = {}, {colorInds, colors} = Transpose[colors]]
];
trie = TriesWithFrequencies`TrieCreate[dataRecords];
If[expandLastColumnQ,
trie = TriePruneNumericalLevel[trie, Dimensions[dataRecords][[2]]];
trie = TriesWithFrequencies`TrieNodeProbabilities[trie];
trie = TrieAddMissingValues[trie, dataRecords[[All, 1 ;; Dimensions[dataRecords][[2]] - 1]]],
(* ELSE *)
trie = TriesWithFrequencies`TrieNodeProbabilities[trie];
trie = TrieAddMissingValues[trie, dataRecords]
];
trie = TriesWithFrequencies`TrieToListTrie[trie];
(* If the color rules are Automatic we pick the column with the largest number of unique values *)
If[TrueQ[colorRules === Automatic],
nvals = {}; t = trie;
While[Length[Rest[t]] > 0, AppendTo[nvals, Length[Rest[t]]]; t = t[[2]]];
(*colors={{Lighter[Blue],Lighter[Red]}};*)
colors = {ColorData[7, "ColorList"]};
colorInds = Take[Flatten[Position[nvals, Max[nvals]]], 1]
];
trie = TrieSortNodes[trie];
rs = TrieMosaicRec[trie, {}, {}, Rectangle[{0, 0}, {1, 1}], firstAxis, firstAxis /. {"x" -> Top, "y" -> Left}, gap, gapFactor, zwidth, labelRotation, labelStyle, addTooltipQ, colors, colorInds];
Graphics[{rs, Black, LABELS, frameLabels},
DeleteCases[{opts}, ("Gap" | "GapFactor" | "ZeroProbability" | "FirstAxis" | "LabelRotation" | "ExpandLastColumn" | "ColumnNames" | "ColumnNamesOffset" | "Tooltips" | ColorRules) -> _]]
];
MosaicPlot[___] := Block[{}, Message[MosaicPlot::nargs]; {}];
End[];
EndPackage[]