forked from antononcube/MathematicaForPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSSparseMatrix.m
940 lines (679 loc) · 34.5 KB
/
SSparseMatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
(*
SSparseMatrix Mathematica package
Copyright (C) 2018 Anton Antonov
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Written by Anton Antonov,
antononcube @ gmail.com,
Windermere, Florida, USA.
*)
(*
Mathematica is (C) Copyright 1988-2018 Wolfram Research, Inc.
Protected by copyright law and international treaties.
Unauthorized reproduction or distribution subject to severe civil
and criminal penalties.
Mathematica is a registered trademark of Wolfram Research, Inc.
*)
(* :Title: SSparseMatrix *)
(* :Author: Anton Antonov *)
(* :Date: 2018-03-30 *)
(* :Package Version: 1.0 *)
(* :Mathematica Version: 11.2 *)
(* :Copyright: (c) 2018 Anton Antonov *)
(* :Keywords: S, R, sparse array, sparse matrix, named rows, named columns *)
(* :Discussion:
# In brief
This package has the function implementations for manipulating objects with head SSparseMatrix that behave like
SparseArray objects but have the added functionalities to use row names and column names in a manner similar to
that of the sparse matrix objects from the base library Matrix [2] for the programming language R [1].
(Similar to regular matrices in S and R.)
The idea is fairly simple: we can use associations or replacement rules to map row names and column names into integers.
Similarly to how it is done in S and R, SSparseMatrix handles only strings as row names and column names.
Here are the overloaded core WL functions:
ArrayRules, Dimensions, Dot, MatrixForm, MatrixPlot, SparseArray, Plus, Times, Total
Note that assignment (with Set[__]) is not implemented.
See the commented out delegation to SparseArray implementation at the end of the file.
# The previous version, RSparseMatrix.m
The first version of this package was made in 2015 with the name RSparseMatrix.m, [4].
The reason for renaming RSparseMatrix into SSparseMatrix is because of the naming convention of the
RLink functions. (E.g. RList, REvaluate, etc.)
Since the language S precedes R and "S" stands for "Statistics" and S has matrices with named rows and columns,
the name "SSparseMatrix" was chosen.
"SSparseMatrix" should mean "statistical sparse matrix" or "S inspired sparse matrix".
# Unit tests
In order to facilitate further package development (and demonstrate what the package functions do)
the unit test file "SSparseMatrix-tests.wlt" was made, [3].
# Usage examples
rmat = MakeSSparseMatrix[
{{1, 1} -> 1, {2, 2} -> 2, {4, 3} -> 3, {1, 4} -> 4, {3, 5} -> 2},
"ColumnNames" -> {"a", "b", "c", "d", "e"},
"RowNames" -> {"A", "B", "C", "D"},
"DimensionNames" -> {"U", "V"}]
rmat // MatrixForm
rmat // MatrixPlot
RowNames[rmat]
(* {"A", "B", "C", "D"} *)
ColumnNames[rmat]
(* {"a", "b", "c", "d", "e"} *)
DimensionNames[rmat]
(* {"U", "V"} *)
rmat.Transpose[rmat[[{1}, All]]]
rmat[[{"C", "D", "A", "B"}, {"c", "d", "e", "a", "b"}]]
rmat2 = ToSSparseMatrix[rmat, "RowNames" -> Map["s." <> # &, RowNames[rmat]]];
RowBind[rmat, rmat] // MatrixForm
RowBind[rmat, rmat2] // MatrixForm
# References:
[1] The R Core Team, R Language Definition, (2015).
URL: https://cran.r-project.org/doc/manuals/r-release/R-lang.pdf
[2] D. Bates, M. Maechler, Sparse and Dense Matrix Classes and Methods, Package 'Matrix', (2015).
URL: https://cran.r-project.org/web/packages/Matrix/Matrix.pdf.
[3] Anton Antonov, SSparseMatrix Mathematica unit tests, (2018), MathematicaForPrediction at GitHub.
URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/UnitTests/SSparseMatrix-tests.wlt
[4] Anton Antonov, RSparseMatrix Mathematica package, (2015), MathematicaForPrediction at GitHub.
URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/Misc/RSparseMatrix.m
This file was created using Mathematica Plugin for IntelliJ IDEA.
Anton Antonov
Windermere, FL, USA
2015-09-27
2018-04-02 (reviewed)
*)
BeginPackage["SSparseMatrix`"];
SSparseMatrix::usage = "Head of a sparse matrix with named rows and columns.";
SSparseMatrixQ::usage = "Predicate is the argument a SSparseMatrix object.";
MakeSSparseMatrix::usage = "Makes a sparse matrix with named rows and columns.";
ToSSparseMatrix::usage = "Converts several types of objects into SSparseMatrix objects. (SparseArray, Dataset, CrossTable results.)";
RowNames::usage = "Gives the row names of a SSparseMatrix object.";
ColumnNames::usage = "Gives the column names of a SSparseMatrix object.";
DimensionNames::usage = "Gives the dimension names of a SSparseMatrix object.";
RowNamesAssociation::usage = "Gives the row names association of a SSparseMatrix object.";
ColumnNamesAssociation::usage = "Gives the column names association of a SSparseMatrix object.";
DimensionNamesAssociation::usage = "Gives the dimension names association of a SSparseMatrix object.";
SetColumnNames::usage = "Sets column names of a SSparseMatrix object.";
SetRowNames::usage = "Sets row names of a SSparseMatrix object.";
SetDimensionNames::usage = "Sets dimension names of a SSparseMatrix object.";
ColumnsCount::usage = "Gives the number of columns of a SSparseMatrix object.";
RowsCount::usage = "Gives the number of rows of a SSparseMatrix object.";
ColumnMaxes::usage = "Gives the maximums of the columns of a SSparseMatrix object.";
ColumnMaxesAssociation::usage = "Gives an Association of the maximums of the columns of a SSparseMatrix object.";
ColumnMins::usage = "Gives the minimums of the columns of a SSparseMatrix object.";
ColumnMinsAssociation::usage = "Gives an Association of the minimums of the columns of a SSparseMatrix object.";
ColumnSums::usage = "Gives the sums of the columns of a SSparseMatrix object.";
ColumnSumsAssociation::usage = "Gives an Association of the sums of the columns of a SSparseMatrix object.";
RowMaxes::usage = "Gives the maximums of the rows of a SSparseMatrix object.";
RowMaxesAssociation::usage = "Gives an Association the maximums of the rows of a SSparseMatrix object.";
RowMins::usage = "Gives the minimums of the rows of a SSparseMatrix object.";
RowMinsAssociation::usage = "Gives an Association the minimums of the rows of a SSparseMatrix object.";
RowSums::usage = "Gives the sums of the rows of a SSparseMatrix object.";
RowSumsAssociation::usage = "Gives an Association the sums of the rows of a SSparseMatrix object.";
ColumnBind::usage = "Binds SSparseMatrix objects column-wise.";
RowBind::usage = "Binds SSparseMatrix objects row-wise.";
SSparseMatrixToTriplets::usage = "Gives the long form of a SSparseMatrix.";
ImposeColumnNames::usage = "ImposeColumnNames[smat,cn] imposes the column names cn into the SSparseMatrix smat. \
In effect makes an union of cn and ColumnNames[smat].";
ImposeRowNames::usage = "ImposeRowNames[smat,rn] imposes the row names rn into the SSparseMatrix smat. \
In effect makes an union of rn and RowNames[smat].";
SSparseMatrixAssociation::usage = "SSparseMatrixAssociation[smat] gives the association corresponding to smat.";
RowAssociations::usage = "RowAssociations[smat] converts into an associations each row of smat.";
ColumnAssociations::usage = "RowAssociations[smat] converts into an associations each column of smat.";
Begin["`Private`"];
Clear[SSparseMatrix, MakeSSparseMatrix, ToSSparseMatrix,
RowNames, ColumnNames, DimensionNames, SetRowNames, SetColumnNames, SetDimensionNames, RowsCount, ColumnsCount,
RowBind, ColumnBind,
ImposeRowNames, ImposeColumnNames];
(* Predicate(s) *)
SSparseMatrixQ[x_] := Head[x] === SSparseMatrix;
(*MakeSSparseMatrix[obj_]:=SSparseMatrix[<|"SparseMatrix"->SparseArray[args],"ColumnNames"\[Rule]None,"RowNames"\[Rule]None,"DimensionNames"\[Rule]None|>];*)
(*Creation and conversion*)
SSparseMatrix::rnset =
"The row names `1` are expected to be None, Automatic, or a list of strings with length that equals the number of rows (`2`) of the SSparseMatrix object.";
SSparseMatrix::cnset =
"The column names `1` are expected to be None, Automatic, or a list of strings with length that equals the number of columns (`2`) of the SSparseMatrix object.";
SSparseMatrix::dnset =
"The dimension names `1` are expected to be a list of two strings or None.";
SSparseMatrix::dnsame =
"The dimension names `1` are the same; using {\"1\", \"2\"} instead.";
ToSSparseMatrix::arg1 =
"The first argument is expected to be a sparse array, a dataset with two dimensions, or a SSparseMatrix object";
Options[MakeSSparseMatrix] = {"RowNames" -> None, "ColumnNames" -> None, "DimensionNames" -> None};
MakeSSparseMatrix[rules_, opts : OptionsPattern[]] :=
MakeSSparseMatrix[rules, Automatic, 0, opts];
MakeSSparseMatrix[rules_, dims_, val_, opts : OptionsPattern[]] :=
Block[{sarr},
sarr = SparseArray[rules, dims, val];
ToSSparseMatrix[sarr, opts]
];
MakeSSparseMatrix[triplets : _?MatrixQ, opts : OptionsPattern[]] :=
MakeSSparseMatrix[triplets, Automatic, 0, opts] /; Dimensions[triplets][[2]] == 3;
MakeSSparseMatrix[triplets : _?MatrixQ, dims_, val_, opts : OptionsPattern[]] :=
Block[{sarr, rowNames, colNames, rules},
rowNames = Union[ triplets[[All, 1]] ];
rowNames = AssociationThread[ rowNames, Range[Length[rowNames]]];
colNames = Union[ triplets[[All, 2]] ];
colNames = AssociationThread[ colNames, Range[Length[colNames]]];
rules = triplets;
rules[[All, 1]] = rowNames /@ rules[[All, 1]];
rules[[All, 2]] = colNames /@ rules[[All, 2]];
sarr = SparseArray[Most[#] -> Last[#]& /@ rules];
ToSSparseMatrix[sarr, "RowNames" -> Map[ToString, Keys[rowNames]], "ColumnNames" -> Map[ToString, Keys[colNames]], opts]
] /; Dimensions[triplets][[2]] == 3;
Options[ToSSparseMatrix] = Options[MakeSSparseMatrix];
ToSSparseMatrix[rmat_SSparseMatrix, opts : OptionsPattern[]] :=
ToSSparseMatrix[First[rmat]["SparseMatrix"], opts,
"RowNames" -> RowNames[rmat], "ColumnNames" -> ColumnNames[rmat],
"DimensionNames" -> DimensionNames[rmat]];
ToSSparseMatrix[sarr_SparseArray, opts : OptionsPattern[]] :=
Block[{rnames, cnames, dnames},
rnames = OptionValue[ToSSparseMatrix, "RowNames"];
cnames = OptionValue[ToSSparseMatrix, "ColumnNames"];
dnames = OptionValue[ToSSparseMatrix, "DimensionNames"];
If[ TrueQ[rnames === Automatic],
rnames = Map[ ToString, Range @ Dimensions[sarr][[1]] ]
];
If[ TrueQ[cnames === Automatic],
cnames = Map[ ToString, Range @ Dimensions[sarr][[2]] ]
];
If[! ( rnames === None || (VectorQ[rnames, StringQ] && Length[rnames] == Dimensions[sarr][[1]]) ),
Message[SSparseMatrix::rnset, If[LeafCount[rnames] > 200, Short[rnames], rnames], Dimensions[sarr][[1]]];
Return[$Failed]
];
If[! ( cnames === None || (VectorQ[cnames, StringQ] && Length[cnames] == Dimensions[sarr][[2]]) ),
Message[SSparseMatrix::cnset, If[LeafCount[cnames] > 200, Short[cnames], cnames], Dimensions[sarr][[2]]];
Return[$Failed]
];
If[dnames === {None, None}, dnames = None];
If[ MatchQ[dnames, {_String, None}], dnames = {dnames[[1]], "2"} ];
If[ MatchQ[dnames, {None, _String}], dnames = {"1", dnames[[2]]} ];
If[! (dnames === None || (MatchQ[dnames, {_String ..}] && Length[dnames] == 2)),
Message[SSparseMatrix::dnset, dnames]; Return[$Failed]
];
If[ Length[dnames] == 2 && dnames[[1]] == dnames[[2]],
Message[SSparseMatrix::dnsame, dnames];
dnames = {"1", "2"}
];
SSparseMatrix[<|"SparseMatrix" -> sarr,
"RowNames" ->
If[rnames === None, None,
AssociationThread[rnames, Range[Dimensions[sarr][[1]]]]],
"ColumnNames" ->
If[cnames === None, None,
AssociationThread[cnames, Range[Dimensions[sarr][[2]]]]],
"DimensionNames" ->
If[dnames === None,
None, (*AssociationThread[{"1", "2"}, {1, 2}], *)
AssociationThread[dnames, {1, 2}]
]
|>]
];
ToSSparseMatrix[ds_Dataset, opts : OptionsPattern[]] :=
Block[{rows, dsRownames, dsColnames, vals, res},
rows = Normal[ds];
If[AssociationQ[rows],
dsRownames = Keys[rows];
rows = rows /@ dsRownames,
(*ELSE*)
dsRownames = None;
];
If[AssociationQ[rows[[1]]],
dsColnames = Keys[rows[[1]]];
vals = Map[Values, rows],
(*ELSE*)
dsColnames = None;
vals = rows;
];
res = ToSSparseMatrix[SparseArray[vals], "RowNames" -> dsRownames, "ColumnNames" -> dsColnames];
If[ Length[{opts}] == 0, res,
ToSSparseMatrix[ res, opts ]
]
] /; Length[Dimensions[ds]] == 2;
ToSSparseMatrix[triplets : _?MatrixQ, opts : OptionsPattern[]] :=
MakeSSparseMatrix[triplets, Automatic, 0, opts] /; Dimensions[triplets][[2]] == 3;
ToSSparseMatrix[triplets : _?MatrixQ, dims_, val_, opts : OptionsPattern[]] :=
MakeSSparseMatrix[triplets, dims, val, opts] /; Dimensions[triplets][[2]] == 3;
ToSSparseMatrix[xtabs_Association, opts : OptionsPattern[] ] :=
Block[{},
ToSSparseMatrix[ xtabs["SparseMatrix"],
"RowNames" -> Map[ToString, xtabs["RowNames"]],
"ColumnNames" -> Map[ToString, xtabs["ColumnNames"]],
opts
]
] /; KeyExistsQ[xtabs, "SparseMatrix"] && KeyExistsQ[xtabs, "RowNames"] && KeyExistsQ[xtabs, "ColumnNames"];
ToSSparseMatrix[arules : Association[ ({_String, _String} -> _?NumericQ) .. ], opts : OptionsPattern[] ] :=
ToSSparseMatrix[ KeyValueMap[ Join[#1, {#2}]&, arules ], opts];
ToSSparseMatrix[aRows : Association[ (_String -> Association[ (_String -> _?NumericQ) .. ]).. ], opts : OptionsPattern[] ] :=
Block[{arules},
arules = Join @@ KeyValueMap[ Function[{k, v}, KeyMap[ {k, #}&, v]], aRows];
ToSSparseMatrix[ arules, opts]
];
Clear[NumericArraySpecQ];
NumericArraySpecQ[x_Association] :=
Apply[And, Map[ KeyExistsQ[x, #]&, {"rowIndexes", "columnIndexes", "values", "shape", "rowNames", "columnNames"}]] &&
Apply[And, NumericArrayQ /@ Values[KeyTake[x, {"rowIndexes", "columnIndexes", "values"}]]];
NumericArraySpecQ[___] := False;
ToSSparseMatrix[spec_?AssociationQ] :=
ToSSparseMatrix[
SparseArray[
Map[(Most[#] + 1) -> Last[#] &,
Transpose[Normal /@ Values[KeyTake[spec, {"rowIndexes", "columnIndexes", "values"}]]]
],
spec["shape"]
],
"RowNames" -> spec["rowNames"],
"ColumnNames" -> spec["columnNames"]
] /; NumericArraySpecQ[spec];
ToSSparseMatrix[___] := Message[ToSSparseMatrix::arg1];
SparseArray[rmat_SSparseMatrix] ^:= First[rmat]["SparseMatrix"];
(* Setters *)
(*SetAttributes[SetRowNames, HoldFirst]*)
SetRowNames[ rmat_, names_ : {_String..} ] :=
Block[{res},
res = ToSSparseMatrix[rmat, "RowNames" -> names, "ColumnNames" -> ColumnNames[rmat], "DimensionNames" -> DimensionNames[rmat]];
If[ Head[res] === SSparseMatrix,
res,
$Failed
]
];
(*SetAttributes[SetColumnNames, HoldFirst]*)
SetColumnNames[ rmat_, names_ : {_String..} ] :=
Block[{res},
res = ToSSparseMatrix[rmat, "RowNames" -> RowNames[rmat], "ColumnNames" -> names, "DimensionNames" -> DimensionNames[rmat]];
If[ TrueQ[Head[res] === SSparseMatrix],
res,
$Failed
]
];
(*SetAttributes[SetDimensionNames, HoldFirst]*)
SetDimensionNames[ rmat_, names_ : {_String..} ] :=
Block[{res},
res = ToSSparseMatrix[rmat, "RowNames" -> RowNames[rmat], "ColumnNames" -> ColumnNames[rmat], "DimensionNames" -> names];
If[ TrueQ[Head[res] === SSparseMatrix],
res,
$Failed
]
];
(*Query methods*)
RowNames[SSparseMatrix[obj_]] :=
If[obj["RowNames"] === None, None, Keys[obj["RowNames"]]];
ColumnNames[SSparseMatrix[obj_]] :=
If[obj["ColumnNames"] === None, None, Keys[obj["ColumnNames"]]];
DimensionNames[SSparseMatrix[obj_]] :=
If[obj["DimensionNames"] === None, {None, None}, Keys[obj["DimensionNames"]]];
RowNamesAssociation[SSparseMatrix[obj_]] :=
If[obj["RowNames"] === None, None, obj["RowNames"]];
ColumnNamesAssociation[SSparseMatrix[obj_]] :=
If[obj["ColumnNames"] === None, None, obj["ColumnNames"]];
DimensionNamesAssociation[SSparseMatrix[obj_]] :=
If[obj["DimensionNames"] === None, {None, None}, obj["DimensionNames"]];
ArrayRules[SSparseMatrix[obj_]] ^:=
ArrayRules[obj["SparseMatrix"]];
Dimensions[SSparseMatrix[obj_]] ^:=
Dimensions[obj["SparseMatrix"]];
RowsCount[r_SSparseMatrix] := Dimensions[r][[1]];
ColumnsCount[r_SSparseMatrix] := Dimensions[r][[2]];
(*Transpose*)
Transpose[SSparseMatrix[obj_]] ^:=
Block[{assoc = obj},
assoc["SparseMatrix"] = Transpose[obj["SparseMatrix"]];
assoc["ColumnNames"] = obj["RowNames"];
assoc["RowNames"] = obj["ColumnNames"];
assoc["DimensionNames"] = If[obj["DimensionNames"] === None, None, Reverse[obj["DimensionNames"]]];
SSparseMatrix[assoc]
];
(*Showing the matrix*)
MatrixForm[SSparseMatrix[obj_], args___] ^:=
MatrixForm[SSparseMatrix[obj][[1]]["SparseMatrix"], args,
TableHeadings -> {RowNames[SSparseMatrix[obj]],
ColumnNames[SSparseMatrix[obj]]}];
MatrixPlot[SSparseMatrix[obj_], args___] ^:=
MatrixPlot[obj["SparseMatrix"], args];
(*------------------------------------------------------------*)
(* Maxes *)
(*------------------------------------------------------------*)
RowMaxes[SSparseMatrix[obj_]] := Total[obj["SparseMatrix"], {2}];
RowMaxesAssociation[smat_SSparseMatrix] := AssociationThread[RowNames[smat], RowMaxes[smat]];
ColumnMaxes[SSparseMatrix[obj_]] := Total[obj["SparseMatrix"]];
ColumnMaxesAssociation[smat_SSparseMatrix] := AssociationThread[ColumnNames[smat], ColumnMaxes[smat]];
(*------------------------------------------------------------*)
(* Mins *)
(*------------------------------------------------------------*)
RowMins[SSparseMatrix[obj_]] := Total[obj["SparseMatrix"], {2}];
RowMinsAssociation[smat_SSparseMatrix] := AssociationThread[RowNames[smat], RowMins[smat]];
ColumnMins[SSparseMatrix[obj_]] := Total[obj["SparseMatrix"]];
ColumnMinsAssociation[smat_SSparseMatrix] := AssociationThread[ColumnNames[smat], ColumnMins[smat]];
(*------------------------------------------------------------*)
(* Sums *)
(*------------------------------------------------------------*)
RowSums[SSparseMatrix[obj_]] := Total[obj["SparseMatrix"], {2}];
RowSumsAssociation[smat_SSparseMatrix] := AssociationThread[RowNames[smat], RowSums[smat]];
ColumnSums[SSparseMatrix[obj_]] := Total[obj["SparseMatrix"]];
ColumnSumsAssociation[smat_SSparseMatrix] := AssociationThread[ColumnNames[smat], ColumnSums[smat]];
Total[SSparseMatrix[obj_], args___] ^:= Total[obj["SparseMatrix"], args];
(*------------------------------------------------------------*)
(* Abs & Clip & N & Rescale & Total & Unitize *)
(*------------------------------------------------------------*)
Abs[SSparseMatrix[objArg_]] ^:=
Block[{obj = objArg},
obj["SparseMatrix"] = SparseArray[Abs[ obj["SparseMatrix"]]];
SSparseMatrix[obj]
];
Clip[SSparseMatrix[objArg_], args___] ^:=
Block[{obj = objArg},
obj["SparseMatrix"] = SparseArray[Clip[ obj["SparseMatrix"], args ]];
SSparseMatrix[obj]
];
(*N[SSparseMatrix[objArg_], args___] ^:=*)
(* Block[{obj = objArg},*)
(* obj["SparseMatrix"] = SparseArray[N[ obj["SparseMatrix"], args ]];*)
(* SSparseMatrix[obj]*)
(* ];*)
Rescale[SSparseMatrix[objArg_], args___] ^:=
Block[{obj = objArg},
obj["SparseMatrix"] = SparseArray[Rescale[ obj["SparseMatrix"], args]];
SSparseMatrix[obj]
];
Round[SSparseMatrix[objArg_], args___] ^:=
Block[{obj = objArg},
obj["SparseMatrix"] = SparseArray[Round[ obj["SparseMatrix"], args]];
SSparseMatrix[obj]
];
Total[SSparseMatrix[objArg_], args___] ^:=
Block[{obj = objArg, res},
res = Total[ obj["SparseMatrix"], args ];
If[NumericQ[res],
res,
(*ELSE*)
obj["SparseMatrix"] = SparseArray[res];
SSparseMatrix[obj]
]
];
Unitize[SSparseMatrix[objArg_]] ^:=
Block[{obj = objArg},
obj["SparseMatrix"] = SparseArray[Unitize[ obj["SparseMatrix"] ]];
SSparseMatrix[obj]
];
(*------------------------------------------------------------*)
(* Dot product *)
(*------------------------------------------------------------*)
(*Note that here we do not have to define the behavior for Dot[r1,r2,r3,r4,\[Ellipsis]] .*)
Dot[SSparseMatrix[obj1_], SSparseMatrix[obj2_]] ^:=
Block[{res},
res = Dot[SSparseMatrix[obj1][[1]]["SparseMatrix"], SSparseMatrix[obj2][[1]]["SparseMatrix"]];
ToSSparseMatrix[res, "RowNames" -> RowNames[SSparseMatrix[obj1]],
"ColumnNames" -> ColumnNames[SSparseMatrix[obj2]],
"DimensionNames" -> {DimensionNames[SSparseMatrix[obj1]][[1]],
DimensionNames[SSparseMatrix[obj2]][[2]]}]
];
Dot[SSparseMatrix[obj_], x_] ^:=
Block[{res},
res = Dot[SSparseMatrix[obj][[1]]["SparseMatrix"], x];
ToSSparseMatrix[res, "RowNames" -> RowNames[SSparseMatrix[obj]],
"DimensionNames" -> {DimensionNames[SSparseMatrix[obj]][[1]], "2"}]
];
Dot[x_, SSparseMatrix[obj_]] ^:=
Block[{res},
res = Dot[x, SSparseMatrix[obj][[1]]["SparseMatrix"]];
ToSSparseMatrix[res, "ColumnNames" -> ColumnNames[SSparseMatrix[obj]],
"DimensionNames" -> {"1", DimensionNames[SSparseMatrix[obj]][[2]]}]
];
(*------------------------------------------------------------*)
(* Arithmetic operators *)
(*------------------------------------------------------------*)
(*Here we need to have an option to respect or to ignore the row names and column names.*)
Times[rmat1_SSparseMatrix, rmat2_SSparseMatrix] ^:=
Block[{},
If[ TrueQ[ RowNames[rmat1] == RowNames[rmat2] && ColumnNames[rmat1] == ColumnNames[rmat2] ],
ToSSparseMatrix[Times[SparseArray[rmat1], SparseArray[rmat2]],
"RowNames" -> RowNames[rmat1], "ColumnNames" -> ColumnNames[rmat1],
"DimensionNames" -> DimensionNames[rmat1]],
(*ELSE*)
ToSSparseMatrix[Times[SparseArray[rmat1], SparseArray[rmat2]]]
]
];
Times[rmat1_SSparseMatrix, x_] ^:=
ToSSparseMatrix[Times[SparseArray[rmat1], x], "RowNames" -> RowNames[rmat1],
"ColumnNames" -> ColumnNames[rmat1],
"DimensionNames" -> DimensionNames[rmat1]];
Times[x_, rmat1_SSparseMatrix] ^:=
ToSSparseMatrix[Times[x, SparseArray[rmat1]], "RowNames" -> RowNames[rmat1],
"ColumnNames" -> ColumnNames[rmat1],
"DimensionNames" -> DimensionNames[rmat1]];
(* Same as above for Plus. *)
Plus[rmat1_SSparseMatrix, rmat2_SSparseMatrix] ^:=
Block[{},
If[TrueQ[ RowNames[rmat1] == RowNames[rmat2] && ColumnNames[rmat1] == ColumnNames[rmat2] ],
ToSSparseMatrix[Plus[SparseArray[rmat1], SparseArray[rmat2]],
"RowNames" -> RowNames[rmat1], "ColumnNames" -> ColumnNames[rmat1],
"DimensionNames" -> DimensionNames[rmat1]],
(*ELSE*)
ToSSparseMatrix[Plus[SparseArray[rmat1], SparseArray[rmat2]]]
]
];
Plus[rmat1_SSparseMatrix, x_] ^:=
ToSSparseMatrix[Plus[SparseArray[rmat1], x], "RowNames" -> RowNames[rmat1],
"ColumnNames" -> ColumnNames[rmat1],
"DimensionNames" -> DimensionNames[rmat1]];
Plus[x_, rmat1_SSparseMatrix] ^:=
ToSSparseMatrix[Plus[x, SparseArray[rmat1]], "RowNames" -> RowNames[rmat1],
"ColumnNames" -> ColumnNames[rmat1],
"DimensionNames" -> DimensionNames[rmat1]];
(*------------------------------------------------------------*)
(* Part *)
(*------------------------------------------------------------*)
(*Part[SSparseMatrix[obj_], s1:(_Integer | {_Integer..} | _Span ) ] ^:= Part[obj["SparseMatrix"], s1, All];*)
Part[SSparseMatrix[obj_], s1 : (_String | {_String ..})] ^:=
Block[{ i1 },
i1 = If[ ListQ[s1], obj["RowNames"] /@ s1, obj["RowNames"] @ s1 ];
Part[ SSparseMatrix[obj], i1, All ]
];
Part[SSparseMatrix[obj_], s1 : (_String | {_String ..}), s2 : (_String | {_String ..})] ^:=
Block[{ i1, i2 },
i1 = If[ ListQ[s1], obj["RowNames"] /@ s1, obj["RowNames"] @ s1 ];
i2 = If[ ListQ[s2], obj["ColumnNames"] /@ s2, obj["ColumnNames"] @ s2 ];
Part[ SSparseMatrix[obj], i1, i2 ]
];
Part[SSparseMatrix[obj_], s1 : (_String | {_String ..}), s2_] ^:=
Block[{ i1 },
i1 = If[ ListQ[s1], obj["RowNames"] /@ s1, obj["RowNames"] @ s1 ];
Part[ SSparseMatrix[obj], i1, s2 ]
];
Part[SSparseMatrix[obj_], s1_, s2 : (_String | {_String ..})] ^:=
Block[{ i2 },
i2 = If[ ListQ[s2], obj["ColumnNames"] /@ s2, obj["ColumnNames"] @ s2 ];
Part[ SSparseMatrix[obj], s1, i2 ]
];
Part[SSparseMatrix[obj_], s1_, s2_] ^:=
Block[{smat},
smat = Part[ obj["SparseMatrix"], s1, s2 ];
If[Head[smat] === Part,
smat,
If[ MatrixQ[smat],
ToSSparseMatrix[smat,
"RowNames" -> If[ RowNames[SSparseMatrix[obj]] === None, None, RowNames[SSparseMatrix[obj]][[s1]] ],
"ColumnNames" -> If[ ColumnNames[SSparseMatrix[obj]] === None, None, ColumnNames[SSparseMatrix[obj]][[s2]] ],
"DimensionNames" -> DimensionNames[SSparseMatrix[obj]]],
(* ELSE *)
smat
]
]
];
(*------------------------------------------------------------*)
(* RowBind, ColumnBind *)
(*------------------------------------------------------------*)
(* Here we need to have an option to respect or to ignore the row names and column names for RowBind and ColumnBind respectively.
RowBind[r1_SSparseMatrix, r2_SSparseMatrix, opts : OptionsPattern[]]
ColumnBind[r1_SSparseMatrix, r2_SSparseMatrix, opts : OptionsPattern[]]
There are three solutions (1) using array rules, (2) using matrix padding, ArrayPad, ArrayReshape, PadLeft and PadRight, and (3) using Join.
Here are the steps of the first algorithm for RowBind:
1. Get array rules of both sparse arrays.
2. Increment the row indices of the second one with the number of rows of the first one.
3. Join the rules and make a new SparseArray object.
4. Make a new SSparseMatrix object with its row names being the joined row names of the arguments.
Here are the steps of the second algorithm for RowBind:
1. Pad from below the sparse array of the first argument to the number of result rows.
2. Pad from above the sparse array of the second argument to the number of result rows.
3. Sum the padded sparse arrays.
4. Make the result SSparseMatrix object with the row names being the joined row names of the arguments.
Using Join is of course straightforward.
Since Association removes duplication of keys special care has to be taken when joining the row and column names.
*)
(*Options[RowBind] = {"IgnoreColumnNames" -> False};*)
RowBind::ncols = "The column names of the two SSparseMatrix objects are expected to be the same.";
RowBind[r1_SSparseMatrix, r2_SSparseMatrix, rm__] := RowBind[ RowBind[r1, r2], rm];
RowBind[rm : {_SSparseMatrix..}] := Fold[RowBind, First[rm], Rest[rm]];
RowBind[r1_SSparseMatrix, r2_SSparseMatrix ] :=
Block[{sarr, joinedRowAssoc, resRowNames},
If[Sort[ColumnNames[r1]] != Sort[ColumnNames[r2]],
Message[RowBind::ncols];
Return[$Failed];
];
(* Optimization *)
If[ ColumnNames[r1] == ColumnNames[r2],
sarr = Join[ SparseArray[r1], SparseArray[r2] ],
(*ELSE*)
sarr = Join[ SparseArray[r1], SparseArray[r2[[All, ColumnNames[r1]]]] ]
];
(* Special handling of duplication of row names in the result. *)
joinedRowAssoc = Join[First[r1]["RowNames"], First[r2]["RowNames"]];
If[Length[joinedRowAssoc] == Dimensions[sarr][[1]],
resRowNames = Join[RowNames[r1], RowNames[r2]],
resRowNames =
Join[# <> ".1" & /@ RowNames[r1], # <> ".2" & /@ RowNames[r2]]
];
ToSSparseMatrix[sarr, "RowNames" -> resRowNames,
"ColumnNames" -> ColumnNames[r1], "DimensionNames" -> DimensionNames[r1]]
];
(*Options[ColumnBind] = {"IgnoreRowNames" -> False};*)
ColumnBind[r1_SSparseMatrix, r2_SSparseMatrix, rm__] := ColumnBind[ ColumnBind[r1, r2], rm];
ColumnBind[rm : {_SSparseMatrix..}] := Fold[ColumnBind, First[rm], Rest[rm]];
ColumnBind[r1_SSparseMatrix, r2_SSparseMatrix ] :=
Block[{sarr, joinedRowAssoc, resColumnNames},
(*Note that here we ignore the row names.*)
sarr = Transpose@
Join[Transpose@SparseArray[r1], Transpose@SparseArray[r2]];
(* Special handling of duplication of column names in the result. *)
joinedRowAssoc = Join[ColumnNamesAssociation[r1], ColumnNamesAssociation[r2]];
If[Length[joinedRowAssoc] == Dimensions[sarr][[2]],
resColumnNames = Join[ColumnNames[r1], ColumnNames[r2]],
(*ELSE*)
resColumnNames =
Join[# <> ".1" & /@ ColumnNames[r1], # <> ".2" & /@ ColumnNames[r2]]
];
ToSSparseMatrix[sarr, "RowNames" -> RowNames[r1],
"ColumnNames" -> resColumnNames, "DimensionNames" -> DimensionNames[r1]]
];
(*------------------------------------------------------------*)
(* Imposing row and column names *)
(*------------------------------------------------------------*)
Clear[ImposeRowNames, ImposeColumnNames];
ImposeRowNames[rmat_SSparseMatrix, rowNames : {_String ..}] :=
ImposeRowNames[rmat, AssociationThread[rowNames -> Range[Length[rowNames]]]];
ImposeRowNames[rmat_SSparseMatrix, rowNames : Association[(_String -> _Integer) ..]] :=
Block[{arules, rmatRowNames, aInds, resMat},
arules = ArrayRules[SparseArray[rmat]];
rmatRowNames = RowNamesAssociation[rmat];
aInds =
AssociationThread[
Values[rmatRowNames],
Lookup[rowNames, Keys[rmatRowNames], None]
];
Block[{mrls = Most[arules]},
arules =
Append[
Thread @ Rule[ Thread @ { Lookup[ aInds, mrls[[All, 1, 1]] ], mrls[[All, 1, 2]] }, mrls[[All, 2]] ],
Last[arules]
];
];
arules = DeleteCases[arules, {None, _Integer} -> _];
ToSSparseMatrix[
SparseArray[arules, {Length[rowNames], ColumnsCount[rmat]}],
"RowNames" -> Keys[rowNames], "ColumnNames" -> ColumnNames[rmat]]
];
ImposeColumnNames[rmat_SSparseMatrix, colNames : {_String ..} | Association[(_String -> _Integer)..]] :=
Transpose[ImposeRowNames[Transpose[rmat], colNames]];
(*------------------------------------------------------------*)
(* Matrix to triplets *)
(*------------------------------------------------------------*)
Clear[SSparseMatrixToTriplets];
SSparseMatrixToTriplets[ rsmat_SSparseMatrix ] :=
Block[{t},
t = Most[ArrayRules[rsmat]];
t = Flatten /@ (List @@@ t);
(* The following two lines are somewhat slower, say, by 20% than the next two lines, but guaranteed to be correct. *)
(* t[[All, 1]] = t[[All, 1]] /. Association[ Reverse /@ Normal[ RowNamesAssociation[rsmat] ] ];*)
(* t[[All, 2]] = t[[All, 2]] /. Association[ Reverse /@ Normal[ ColumnNamesAssociation[rsmat] ] ];*)
(* The following two lines are fast, but there is an assumption that the associations
for row names and column names are (1) sorted and (2) getting keys preserves the order. *)
t[[All, 1]] = RowNames[rsmat][[ t[[All, 1]] ]];
t[[All, 2]] = ColumnNames[rsmat][[ t[[All, 2]] ]];
t
];
(* Delegation to SparseArray functions *)
(* This is similar to the OOP design pattern Decorator.
The implementation is still experimental.
New functions for SSparseMatrix objects have to be added into the do-not-decorate list.
Note that this decoration is very aggressive and it might have un-forseen effects.
*)
(*------------------------------------------------------------*)
(* Matrix to associations *)
(*------------------------------------------------------------*)
Clear[SSparseMatrixAssociation];
SSparseMatrixAssociation[smat_?SSparseMatrixQ] :=
Block[{recs = SSparseMatrixToTriplets[smat]},
AssociationThread[recs[[All, {1, 2}]], recs[[All, 3]] ]
];
(*
Interestingly using
AssociationThread @@ Transpose[ #[[All, {2, 3}]] ] &
is not noticeably faster than
Association[ Rule @@@ #[[All, {2, 3}]] ] &
Say, ~ 10%.
*)
(*Clear[RowAssociations];*)
(*RowAssociations[smat_?SSparseMatrixQ] :=*)
(* GroupBy[SSparseMatrixToTriplets[smat], First, Association[ Rule @@@ #[[All, {2, 3}]] ] &];*)
(*Clear[ColumnAssociations];*)
(*ColumnAssociations[smat_?SSparseMatrixQ] :=*)
(* GroupBy[SSparseMatrixToTriplets[smat], #[[2]]&, Association[ Rule @@@ #[[All, {1, 3}]] ] &];*)
Clear[RowAssociations];
RowAssociations[smat_?SSparseMatrixQ] :=
GroupBy[SSparseMatrixToTriplets[smat], First, AssociationThread @@ Transpose[ #[[All, {2, 3}]] ] &];
Clear[ColumnAssociations];
ColumnAssociations[smat_?SSparseMatrixQ] :=
GroupBy[SSparseMatrixToTriplets[smat], #[[2]]&, AssociationThread @@ Transpose[ #[[All, {1, 3}]] ] &];
(*------------------------------------------------------------*)
(* Format *)
(*------------------------------------------------------------*)
Format[SSparseMatrix[obj_]] := obj["SparseMatrix"];
(*F_[rmat_SSparseMatrix, args___] ^:=*)
(*Block[{res = F[SparseArray[rmat], args]},*)
(*Print["SSparseMatrix decoration::F=",F];*)
(*Print["SSparseMatrix decoration::res=",res];*)
(*If[MatrixQ[res],*)
(*SSparseMatrix[*)
(*Join[<|"SparseMatrix" -> SparseArray[res]|>, Rest[First[rmat]]]],*)
(*res*)
(*]*)
(*] /;*)
(*! MemberQ[*)
(*Join[{"SparseMatrix", "ToSSparseMatrix",*)
(*"RowNames", "ColumnNames", "DimensionNames",*)
(*"SetRowNames", "SetColumnNames", "SetDimensionNames",*)
(*"MatrixForm", "MatrixPlot",*)
(*"Dimensions", "ArrayRules",*)
(*"Total", "RowSums", "ColumnSums", "RowsCount", "ColumnsCount",*)
(*"Dot", "Plus", "Times", "Part",*)
(*"RowBind", "ColumnBind",*)
(*"Head", "Format", "Print"},*)
(*Names["System`*Hold*"],*)
(*Names["System`Inactiv*"],*)
(*Names["System`Activ*"]*)
(*], SymbolName[F] ];*)
End[];
EndPackage[];