@@ -71,14 +71,15 @@ def get_knutson_scaling_factor(
7171 in Jewson et al., (2021).
7272
7373 Related publications:
74- - Knutson et al., (2020): Tropical cyclones and climate
75- change assessment. Part II: Projected response to anthropogenic warming.
76- Bull. Amer. Meteor. Soc., 101 (3), E303–E322,
77- https://doi.org/10.1175/BAMS-D-18-0194.1.
7874
79- - Jewson (2021): Conversion of the Knutson et al. (2020) Tropical Cyclone
80- Climate Change Projections to Risk Model Baselines,
81- https://doi.org/10.1175/JAMC-D-21-0102.1
75+ - Knutson et al., (2020): Tropical cyclones and climate
76+ change assessment. Part II: Projected response to anthropogenic warming.
77+ Bull. Amer. Meteor. Soc., 101 (3), E303–E322,
78+ https://doi.org/10.1175/BAMS-D-18-0194.1.
79+
80+ - Jewson (2021): Conversion of the Knutson et al. (2020) Tropical Cyclone
81+ Climate Change Projections to Risk Model Baselines,
82+ https://doi.org/10.1175/JAMC-D-21-0102.1
8283
8384 Parameters
8485 ----------
@@ -94,21 +95,24 @@ def get_knutson_scaling_factor(
9495 the provided percentiles are the 10th, 25th, 50th, 75th and 90th. Please refer to the
9596 mentioned publications for more details.
9697 possible percentiles:
97- '5/10' either the 5th or 10th percentile depending on variable (see text above)
98- '25' for the 25th percentile
99- '50' for the 50th percentile
100- '75' for the 75th percentile
101- '90/95' either the 90th or 95th percentile depending on variable (see text above)
98+
99+ * '5/10' either the 5th or 10th percentile depending on variable (see text above)
100+ * '25' for the 25th percentile
101+ * '50' for the 50th percentile
102+ * '75' for the 75th percentile
103+ * '90/95' either the 90th or 95th percentile depending on variable (see text above)
104+
102105 Default: '50'
103106 basin : str
104107 region of interest, possible choices are:
105- 'NA', 'WP', 'EP', 'NI', 'SI', 'SP'
108+ 'NA', 'WP', 'EP', 'NI', 'SI', 'SP'
106109 baseline : tuple of int
107110 the starting and ending years that define the historical
108111 baseline. The historical baseline period must fall within
109112 the GSMT data period, i.e., 1880-2100. Default is 1982-2022.
110113 yearly_steps : int
111114 yearly resolution at which projections are provided. Default is 5 years.
115+
112116 Returns
113117 -------
114118 future_change_variable : pd.DataFrame
@@ -207,10 +211,11 @@ def get_gmst_info():
207211 -------
208212 gmst_info : dict
209213 dictionary with four keys, which are:
210- - rcps: list of strings referring to RCPs 2.6, 4.5, 6.0 and 8.5
211- - gmst_start_year: integer with the GMST data starting year, 1880
212- - gmst_end_year: integer with the GMST data ending year, 2100
213- - gmst_data: array with GMST data across RCPs (first dim) and years (second dim)
214+
215+ * rcps: list of strings referring to RCPs 2.6, 4.5, 6.0 and 8.5
216+ * gmst_start_year: integer with the GMST data starting year, 1880
217+ * gmst_end_year: integer with the GMST data ending year, 2100
218+ * gmst_data: array with GMST data across RCPs (first dim) and years (second dim)
214219 """
215220
216221 gmst_data = np .array (
0 commit comments