|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "This question asks to prove that maxmizing variance with the first principal component from PCA is equivalent to minimize the mean squared error (MSE)." |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "Given a unit vector $u$, the projection of $x$ onto it is \n", |
| 15 | + "\n", |
| 16 | + "$$\n", |
| 17 | + "f_u(x) = (u^T x) u\n", |
| 18 | + "$$" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "Then,\n", |
| 26 | + "\n", |
| 27 | + "\\begin{align*}\n", |
| 28 | + "\\mathrm{MSE}\n", |
| 29 | + "&= \\frac{1}{m} \\sum_{i=1}^m \\left \\| x^{(i)} - f_u(x^{(i)}) \\right \\|_2^2 \\\\\n", |
| 30 | + "&= \\frac{1}{m} \\sum_{i=1}^m \\bigg( \\big(x^{(i)} - (u^T x^{(i)})u \\big)^T \\big(x^{(i)} - (u^T x^{(i)})u \\big) \\bigg )\\\\\n", |
| 31 | + "&= \\frac{1}{m} \\sum_{i=1}^m \\bigg( (x^{(i)})^Tx^{(i)} - \\big( (u^T x^{(i)})u \\big)^T x^{(i)} - (x^{(i)})^T\\big( (u^T x^{(i)})u \\big) + \\big( (u^T x^{(i)})u \\big)^T \\big( (u^T x^{(i)})u \\big) \\bigg ) \\\\\n", |
| 32 | + "&= \\frac{1}{m} \\sum_{i=1}^m \\bigg( (x^{(i)})^Tx^{(i)} - 2 (u^T x^{(i)}) (u ^T x^{(i)}) + (u^T x^{(i)})^2 (u^Tu) \\bigg ) \\\\\n", |
| 33 | + "&= \\frac{1}{m} \\sum_{i=1}^m \\bigg( (x^{(i)})^Tx^{(i)} - (u^T x^{(i)})^2 \\bigg ) \\\\\n", |
| 34 | + "&= \\frac{1}{m} \\sum_{i=1}^m (x^{(i)})^Tx^{(i)} - \\frac{1}{m} \\sum_{i=1}^m (u^T x^{(i)})^2 \\\\\n", |
| 35 | + "&= \\frac{1}{m} \\sum_{i=1}^m (x^{(i)})^Tx^{(i)} - \\bigg( \\frac{1}{m} \\sum_{i=1}^m u^T x^{(i)} \\bigg)^2 - \\mathrm{Var}(u^Tx^{(i)})\n", |
| 36 | + "\\end{align*}" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "metadata": {}, |
| 42 | + "source": [ |
| 43 | + "Compared to the equation in the problem set, I added $\\frac{1}{m}$ to the MSE, which won't affect the minization/maximization problem.\n", |
| 44 | + "\n", |
| 45 | + "The last equality uses the fact about variance and mean that is $E[(X - \\bar X)^2] = (E[X])^2 - E[(X^2)]$.\n", |
| 46 | + "\n", |
| 47 | + "This proves that maximizing the variance is equivalent to minimizing the MSE." |
| 48 | + ] |
| 49 | + } |
| 50 | + ], |
| 51 | + "metadata": { |
| 52 | + "anaconda-cloud": {}, |
| 53 | + "kernelspec": { |
| 54 | + "display_name": "Python 3", |
| 55 | + "language": "python", |
| 56 | + "name": "python3" |
| 57 | + }, |
| 58 | + "language_info": { |
| 59 | + "codemirror_mode": { |
| 60 | + "name": "ipython", |
| 61 | + "version": 3 |
| 62 | + }, |
| 63 | + "file_extension": ".py", |
| 64 | + "mimetype": "text/x-python", |
| 65 | + "name": "python", |
| 66 | + "nbconvert_exporter": "python", |
| 67 | + "pygments_lexer": "ipython3", |
| 68 | + "version": "3.5.1" |
| 69 | + } |
| 70 | + }, |
| 71 | + "nbformat": 4, |
| 72 | + "nbformat_minor": 2 |
| 73 | +} |
0 commit comments