|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "Suppose at $t$-step, $\\theta = \\theta^*$" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "$$\n", |
| 15 | + "M = \\sum_i^m\\sum_{z^{(i)}} Q_i^*(z^{(i)}) \\log \\frac{p(x^{(i)}, z^{(i)}; \\theta)}{Q^*(z^{(i)})}\n", |
| 16 | + "$$" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "where\n", |
| 24 | + "\n", |
| 25 | + "$$\n", |
| 26 | + "Q_i^*(z^{(i)}) = p(z^{(i)} | x^{(i)}; \\theta^*) = \\frac{p(x^{(i)}, z^{(i)}; \\theta^*)}{p(x^{(i)}; \\theta^*)}\n", |
| 27 | + "$$\n", |
| 28 | + "\n", |
| 29 | + "for each $i$, following the E-step. Note $Q_i^*(z^{(i)})$ is a constant indepedent of $\\theta$." |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "Take derivative of $M$ over $\\theta$\n", |
| 37 | + "\n", |
| 38 | + "\\begin{align*}\n", |
| 39 | + "\\nabla_{\\theta}{M} \n", |
| 40 | + "&= \\sum_i^m\\sum_{z^{(i)}} Q_i^*(z^{(i)}) \\frac{Q_i^*(z^{(i)})}{p(x^{(i)}, z^{(i)};\\theta)} \\frac{1}{Q_i^*(z^{(i)})} \\nabla_{\\theta}p(x^{(i)}, z^{(i)};\\theta) \\\\\n", |
| 41 | + "&= \\sum_i^m\\sum_{z^{(i)}} \\frac{p(x^{(i)}, z^{(i)}; \\theta^*)}{p(x^{(i)}; \\theta^*)} \\frac{\\nabla_{\\theta}p(x^{(i)}, z^{(i)};\\theta)}{p(x^{(i)}, z^{(i)};\\theta)} \\\\\n", |
| 42 | + "\\end{align*}" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "markdown", |
| 47 | + "metadata": {}, |
| 48 | + "source": [ |
| 49 | + "Since $\\theta$ has converged to $\\theta^*$, setting $\\theta = \\theta^*$ will make $\\nabla_{\\theta}M = 0$." |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "metadata": {}, |
| 55 | + "source": [ |
| 56 | + "\\begin{align*}\n", |
| 57 | + "\\nabla_{\\theta}{M}|_{\\theta = \\theta^*} \n", |
| 58 | + "&= \\sum_i^m\\sum_{z^{(i)}} \\frac{p(x^{(i)}, z^{(i)}; \\theta^*)}{p(x^{(i)}; \\theta^*)}\\frac{\\nabla_{\\theta}p(x^{(i)}, z^{(i)};\\theta)|_{\\theta = \\theta^*}}{p(x^{(i)}, z^{(i)};\\theta^*)} \\\\\n", |
| 59 | + "&= \\sum_i^m\\sum_{z^{(i)}} \\frac{\\nabla_{\\theta}p(x^{(i)}, z^{(i)};\\theta)|_{\\theta = \\theta^*}}{p(x^{(i)}; \\theta^*)} \\\\\n", |
| 60 | + "&= \\sum_i^m \\frac{\\nabla_{\\theta}p(x^{(i)}, \\theta)|_{\\theta = \\theta^*}}{p(x^{(i)}; \\theta^*)} \\\\\n", |
| 61 | + "&= \\sum_i^m \\nabla_{\\theta} \\log p(x^{(i)}; \\theta)|_{\\theta = \\theta^*} \\\\\n", |
| 62 | + "&= \\nabla_{\\theta} \\sum_i^m \\log p(x^{(i)}; \\theta)|_{\\theta = \\theta^*} \\\\\n", |
| 63 | + "&= \\nabla_{\\theta} \\ell(\\theta) \\\\\n", |
| 64 | + "&= 0\n", |
| 65 | + "\\end{align*}" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "markdown", |
| 70 | + "metadata": {}, |
| 71 | + "source": [ |
| 72 | + "Therefore, upon convergence, Letting $\\nabla_{\\theta}M = 0$ is equivalent to letting $\\nabla_{\\theta} \\ell = 0$." |
| 73 | + ] |
| 74 | + } |
| 75 | + ], |
| 76 | + "metadata": { |
| 77 | + "anaconda-cloud": {}, |
| 78 | + "kernelspec": { |
| 79 | + "display_name": "Python [default]", |
| 80 | + "language": "python", |
| 81 | + "name": "python3" |
| 82 | + }, |
| 83 | + "language_info": { |
| 84 | + "codemirror_mode": { |
| 85 | + "name": "ipython", |
| 86 | + "version": 3 |
| 87 | + }, |
| 88 | + "file_extension": ".py", |
| 89 | + "mimetype": "text/x-python", |
| 90 | + "name": "python", |
| 91 | + "nbconvert_exporter": "python", |
| 92 | + "pygments_lexer": "ipython3", |
| 93 | + "version": "3.5.3" |
| 94 | + } |
| 95 | + }, |
| 96 | + "nbformat": 4, |
| 97 | + "nbformat_minor": 2 |
| 98 | +} |
0 commit comments