|
| 1 | +# Claude |
| 2 | + |
| 3 | +<iframe width="700" height="500" src="https://www.youtube.com/embed/F4HdBTVKRWg" title="Claude v0.0.0 Live-Coding Demo" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> |
| 4 | + |
| 5 | +[Claude](https://github.com/mugulmd/Claude/) is a tool for synchronizing visuals with audio in a live-coding context. |
| 6 | + |
| 7 | +It comes as a Sardine extension, and allows you to control an OpenGL shader from Sardine. |
| 8 | + |
| 9 | +```python |
| 10 | +@swim |
| 11 | +def arpy(p=.25, i=0): |
| 12 | + build_up = '[1:100,.2]' |
| 13 | + D('(neu arpy:rand*20 2|5 8)', i=i, |
| 14 | + lpf=f'100+{build_up}*50', |
| 15 | + room=1, size=f'.5+{build_up}*(.4/100)' |
| 16 | + ) |
| 17 | + again(arpy, p=.25, i=i+1) |
| 18 | + |
| 19 | +@swim |
| 20 | +def stomp(p=.5, i=0): |
| 21 | + D('(eu stomp:(6|4|1) 5 8)', i=i) |
| 22 | + Claude('cellsize', '.3 .2 .1 .', i=i, d=4) |
| 23 | + D('. stomp:3', i=i, d=4, speed='[1 .5]!!2') |
| 24 | + Claude('noiseamp', '0 0 .02 0', i=i, d=2) |
| 25 | + again(stomp, p=.5, i=i+1) |
| 26 | + |
| 27 | +@swim |
| 28 | +def slowmvt(p=2, i=0): |
| 29 | + Claude('mvt', ['.1 (-.1) 0', '0 rand*.2'], i=i) |
| 30 | + Claude('gap', '2 3|4', dt='i', i=i, d=3) |
| 31 | + again(slowmvt, p=2, i=i+1) |
| 32 | +``` |
| 33 | + |
| 34 | +``` |
| 35 | +#version 330 |
| 36 | +
|
| 37 | +uniform vec2 resolution; |
| 38 | +uniform float time; |
| 39 | +
|
| 40 | +uniform float cellsize = .5; |
| 41 | +uniform float pixsize = .01; |
| 42 | +uniform float noiseamp = .0; |
| 43 | +uniform int gap = 2; |
| 44 | +uniform vec2 mvt = vec2(0.1, 0.0); |
| 45 | +
|
| 46 | +out vec3 frag_color; |
| 47 | +
|
| 48 | +float noise(float x) { |
| 49 | + return fract(sin(x) * 43758.5453123); |
| 50 | +} |
| 51 | +
|
| 52 | +ivec2 pixelate(vec2 uv, float size) { |
| 53 | + return ivec2(floor(uv / size)); |
| 54 | +} |
| 55 | +
|
| 56 | +vec2 cell_point(ivec2 cell) { |
| 57 | + float rand = noise(dot(cell, ivec2(12, 45))); |
| 58 | + float phase = rand * 100; |
| 59 | + float speed = 1 + rand; |
| 60 | + float angle = speed * time + phase; |
| 61 | + return (vec2(cos(angle), sin(angle)) + 1.0) * .5; |
| 62 | +} |
| 63 | +
|
| 64 | +void main() { |
| 65 | + // Retrieve, normalize and unsqueeze fragment coordinates |
| 66 | + vec2 uv = gl_FragCoord.xy / resolution; |
| 67 | + uv = 2.0 * uv - 1.0; |
| 68 | + uv.x *= resolution.x / resolution.y; |
| 69 | +
|
| 70 | + uv += mvt * time; |
| 71 | +
|
| 72 | + ivec2 pix = pixelate(uv, pixsize); |
| 73 | + uv = pix * pixsize; |
| 74 | + float disp = 2*noise(pix.y) - 1; |
| 75 | + uv += disp * noiseamp; |
| 76 | +
|
| 77 | + ivec2 coords = pixelate(uv, cellsize); |
| 78 | +
|
| 79 | + // Compute Voronoi cell |
| 80 | + float dist_min = 1000.; |
| 81 | + ivec2 cell_min = coords; |
| 82 | + for (int dx = -1; dx <= 1; dx++) { |
| 83 | + for (int dy = -1; dy <= 1; dy++) { |
| 84 | + ivec2 cell = coords + ivec2(dx, dy); |
| 85 | + vec2 pos = (cell_point(cell) + vec2(cell)) * cellsize; |
| 86 | + float dist = distance(uv, pos); |
| 87 | + if (dist < dist_min) { |
| 88 | + dist_min = dist; |
| 89 | + cell_min = cell; |
| 90 | + } |
| 91 | + } |
| 92 | + } |
| 93 | +
|
| 94 | + // Output color based on cell coordinates |
| 95 | + if (cell_min.x % gap == 0) { |
| 96 | + frag_color = vec3(1.0, 0.7, 0.9); |
| 97 | + } else { |
| 98 | + frag_color = vec3(0.0, 0.4, 0.6); |
| 99 | + } |
| 100 | +} |
| 101 | +``` |
0 commit comments