-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathexperiment_sup.py
273 lines (215 loc) · 11.5 KB
/
experiment_sup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import click
@click.command()
@click.option('--exp', type=click.Choice(['svhn_mnist', 'mnist_svhn',
'svhn_mnist_rgb', 'mnist_svhn_rgb',
'cifar_stl', 'stl_cifar',
'mnist_usps', 'usps_mnist',
'syndigits_svhn', 'svhn_syndigits',
'synsigns_gtsrb', 'gtsrb_synsigns'
]), default='svhn_mnist',
help='experiment to run')
@click.option('--arch', type=click.Choice([
'',
'mnist-bn-32-64-256',
'grey-32-64-128-gp', 'grey-32-64-128-gp-wn', 'grey-32-64-128-gp-nonorm',
'rgb-128-256-down-gp', 'resnet18-32',
'rgb40-48-96-192-384-gp', 'rgb40-96-192-384-gp',
]), default='', help='network architecture')
@click.option('--learning_rate', type=float, default=0.001, help='learning rate (Adam)')
@click.option('--standardise_samples', default=False, is_flag=True, help='standardise samples (0 mean unit var)')
@click.option('--affine_std', type=float, default=0.1, help='aug xform: random affine transform std-dev')
@click.option('--xlat_range', type=float, default=2.0, help='aug xform: translation range')
@click.option('--hflip', default=False, is_flag=True, help='aug xform: enable random horizontal flips')
@click.option('--intens_flip', is_flag=True, default=False, help='aug colour; intensity flip')
@click.option('--intens_scale_range', type=str, default='',
help='aug colour; intensity scale range `low:high` (-1.5:1.5 for mnist-svhn)')
@click.option('--intens_offset_range', type=str, default='',
help='aug colour; intensity offset range `low:high` (-0.5:0.5 for mnist-svhn)')
@click.option('--gaussian_noise_std', type=float, default=0.1,
help='aug: standard deviation of Gaussian noise to add to samples')
@click.option('--num_epochs', type=int, default=200, help='number of epochs')
@click.option('--batch_size', type=int, default=64, help='mini-batch size')
@click.option('--seed', type=int, default=0, help='random seed (0 for time-based)')
@click.option('--log_file', type=str, default='', help='log file path (none to disable)')
@click.option('--device', type=int, default=0, help='Device')
def experiment(exp, arch, learning_rate,
standardise_samples, affine_std, xlat_range, hflip,
intens_flip, intens_scale_range, intens_offset_range, gaussian_noise_std,
num_epochs, batch_size, seed,
log_file, device):
import os
import sys
import cmdline_helpers
if log_file == '':
log_file = 'output_aug_log_{}.txt'.format(exp)
elif log_file == 'none':
log_file = None
if log_file is not None:
if os.path.exists(log_file):
print('Output log file {} already exists'.format(log_file))
return
intens_scale_range_lower, intens_scale_range_upper, intens_offset_range_lower, intens_offset_range_upper = \
cmdline_helpers.intens_aug_options(intens_scale_range, intens_offset_range)
import time
import math
import numpy as np
from batchup import data_source, work_pool
import data_loaders
import standardisation
import network_architectures
import augmentation
import torch, torch.cuda
from torch import nn
from torch.nn import functional as F
with torch.cuda.device(device):
pool = work_pool.WorkerThreadPool(2)
n_chn = 0
if exp == 'svhn_mnist':
d_source = data_loaders.load_svhn(zero_centre=False, greyscale=True)
d_target = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, val=False)
elif exp == 'mnist_svhn':
d_source = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True)
d_target = data_loaders.load_svhn(zero_centre=False, greyscale=True, val=False)
elif exp == 'svhn_mnist_rgb':
d_source = data_loaders.load_svhn(zero_centre=False, greyscale=False)
d_target = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, val=False, rgb=True)
elif exp == 'mnist_svhn_rgb':
d_source = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, rgb=True)
d_target = data_loaders.load_svhn(zero_centre=False, greyscale=False, val=False)
elif exp == 'cifar_stl':
d_source = data_loaders.load_cifar10(range_01=False)
d_target = data_loaders.load_stl(zero_centre=False, val=False)
elif exp == 'stl_cifar':
d_source = data_loaders.load_stl(zero_centre=False)
d_target = data_loaders.load_cifar10(range_01=False, val=False)
elif exp == 'mnist_usps':
d_source = data_loaders.load_mnist(zero_centre=False)
d_target = data_loaders.load_usps(zero_centre=False, scale28=True, val=False)
elif exp == 'usps_mnist':
d_source = data_loaders.load_usps(zero_centre=False, scale28=True)
d_target = data_loaders.load_mnist(zero_centre=False, val=False)
elif exp == 'syndigits_svhn':
d_source = data_loaders.load_syn_digits(zero_centre=False)
d_target = data_loaders.load_svhn(zero_centre=False, val=False)
elif exp == 'svhn_syndigits':
d_source = data_loaders.load_svhn(zero_centre=False, val=False)
d_target = data_loaders.load_syn_digits(zero_centre=False)
elif exp == 'synsigns_gtsrb':
d_source = data_loaders.load_syn_signs(zero_centre=False)
d_target = data_loaders.load_gtsrb(zero_centre=False, val=False)
elif exp == 'gtsrb_synsigns':
d_source = data_loaders.load_gtsrb(zero_centre=False, val=False)
d_target = data_loaders.load_syn_signs(zero_centre=False)
else:
print('Unknown experiment type \'{}\''.format(exp))
return
# Delete the training ground truths as we should not be using them
del d_target.train_y
if standardise_samples:
standardisation.standardise_dataset(d_source)
standardisation.standardise_dataset(d_target)
n_classes = d_source.n_classes
print('Loaded data')
if arch == '':
if exp in {'mnist_usps', 'usps_mnist'}:
arch = 'mnist-bn-32-64-256'
if exp in {'svhn_mnist', 'mnist_svhn'}:
arch = 'grey-32-64-128-gp'
if exp in {'cifar_stl', 'stl_cifar', 'syndigits_svhn', 'svhn_syndigits', 'svhn_mnist_rgb', 'mnist_svhn_rgb'}:
arch = 'rgb-48-96-192-gp'
if exp in {'synsigns_gtsrb', 'gtsrb_synsigns'}:
arch = 'rgb40-48-96-192-384-gp'
net_class, expected_shape = network_architectures.get_net_and_shape_for_architecture(arch)
if expected_shape != d_source.train_X.shape[1:]:
print('Architecture {} not compatible with experiment {}; it needs samples of shape {}, '
'data has samples of shape {}'.format(arch, exp, expected_shape, d_source.train_X.shape[1:]))
return
net = net_class(n_classes).cuda()
params = list(net.parameters())
optimizer = torch.optim.Adam(params, lr=learning_rate)
classification_criterion = nn.CrossEntropyLoss()
print('Built network')
aug = augmentation.ImageAugmentation(
hflip, xlat_range, affine_std,
intens_scale_range_lower=intens_scale_range_lower, intens_scale_range_upper=intens_scale_range_upper,
intens_offset_range_lower=intens_offset_range_lower, intens_offset_range_upper=intens_offset_range_upper,
intens_flip=intens_flip, gaussian_noise_std=gaussian_noise_std)
def augment(X_sup, y_sup):
X_sup = aug.augment(X_sup)
return [X_sup, y_sup]
def f_train(X_sup, y_sup):
X_sup = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
y_sup = torch.autograd.Variable(torch.from_numpy(y_sup).long().cuda())
optimizer.zero_grad()
net.train(mode=True)
sup_logits_out = net(X_sup)
# Supervised classification loss
clf_loss = classification_criterion(sup_logits_out, y_sup)
loss_expr = clf_loss
loss_expr.backward()
optimizer.step()
n_samples = X_sup.size()[0]
return float(clf_loss.data.cpu().numpy()) * n_samples
print('Compiled training function')
def f_pred_src(X_sup):
X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
net.train(mode=False)
return F.softmax(net(X_var)).data.cpu().numpy()
def f_pred_tgt(X_sup):
X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
net.train(mode=False)
return F.softmax(net(X_var)).data.cpu().numpy()
def f_eval_src(X_sup, y_sup):
y_pred_prob = f_pred_src(X_sup)
y_pred = np.argmax(y_pred_prob, axis=1)
return float((y_pred != y_sup).sum())
def f_eval_tgt(X_sup, y_sup):
y_pred_prob = f_pred_tgt(X_sup)
y_pred = np.argmax(y_pred_prob, axis=1)
return float((y_pred != y_sup).sum())
print('Compiled evaluation function')
# Setup output
def log(text):
print(text)
if log_file is not None:
with open(log_file, 'a') as f:
f.write(text + '\n')
f.flush()
f.close()
cmdline_helpers.ensure_containing_dir_exists(log_file)
# Report setttings
log('sys.argv={}'.format(sys.argv))
# Report dataset size
log('Dataset:')
log('SOURCE Train: X.shape={}, y.shape={}'.format(d_source.train_X.shape, d_source.train_y.shape))
log('SOURCE Test: X.shape={}, y.shape={}'.format(d_source.test_X.shape, d_source.test_y.shape))
log('TARGET Train: X.shape={}'.format(d_target.train_X.shape))
log('TARGET Test: X.shape={}, y.shape={}'.format(d_target.test_X.shape, d_target.test_y.shape))
print('Training...')
train_ds = data_source.ArrayDataSource([d_source.train_X, d_source.train_y]).map(augment)
source_test_ds = data_source.ArrayDataSource([d_source.test_X, d_source.test_y])
target_test_ds = data_source.ArrayDataSource([d_target.test_X, d_target.test_y])
if seed != 0:
shuffle_rng = np.random.RandomState(seed)
else:
shuffle_rng = np.random
best_src_test_err = 1.0
for epoch in range(num_epochs):
t1 = time.time()
train_res = train_ds.batch_map_mean(
f_train, batch_size=batch_size, shuffle=shuffle_rng)
train_clf_loss = train_res[0]
src_test_err, = source_test_ds.batch_map_mean(f_eval_src, batch_size=batch_size * 4)
tgt_test_err, = target_test_ds.batch_map_mean(f_eval_tgt, batch_size=batch_size * 4)
t2 = time.time()
if src_test_err < best_src_test_err:
log('*** Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}; '
'SRC TEST ERR={:.3%}, TGT TEST err={:.3%}'.format(
epoch, t2 - t1, train_clf_loss, src_test_err, tgt_test_err))
best_src_test_err = src_test_err
else:
log('Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}; '
'SRC TEST ERR={:.3%}, TGT TEST err={:.3%}'.format(
epoch, t2 - t1, train_clf_loss, src_test_err, tgt_test_err))
if __name__ == '__main__':
experiment()