Skip to content

Commit 38d252d

Browse files
minor changes
1 parent e1a8f6c commit 38d252d

File tree

3 files changed

+13
-28
lines changed

3 files changed

+13
-28
lines changed

DESCRIPTION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Package: BioDataScience2
2-
Version: 2020.2.1
2+
Version: 2020.2.2
33
Title: A Series of Learnr Documents for Biological Data Science 2
44
Description: Interactive documents using learnr for studying biological data science (second course).
55
Authors@R: c(

NEWS.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,9 @@
11
# BioDataScience2 News
22

3+
## Changes in version 2020.2.2
4+
5+
- Minor change in B02la_reg_multi
6+
37
## Changes in version 2020.2.1
48

59
- Minor change in B02lB_reg_poly

inst/tutorials/B02La_reg_multi/B02La_reg_multi.Rmd

Lines changed: 8 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ author: "Guyliann Engels & Philippe Grosjean"
44
description: "**SDD II Module 2** Application des concepts liés la régression linéaire multiple."
55
tutorial:
66
id: "B02La_reg_multi"
7-
version: 2.0.0/7
7+
version: 2.2.0/7
88
output:
99
learnr::tutorial:
1010
progressive: true
@@ -84,37 +84,17 @@ df1 <- tibble(
8484
💬 **Un snippet peut vous aider à réaliser cet exercice.**
8585

8686
```{r reglin_h2, exercise = TRUE, exercise.setup = "reglin-prep"}
87-
#
8887
summary(lm. <- lm(data = ___, ___ ~ ___))
89-
lm. %>.% (function (lm, model = lm[["model"]], vars = names(model))
90-
chart(model, aes_string(x = vars[2], y = vars[1])) +
91-
geom_point() +
92-
stat_smooth(method = "lm", formula = y ~ x))(.)
9388
```
9489

9590
```{r reglin_h2-hint}
96-
#snippet
97-
summary(lm. <- lm(data = DF, YNUM ~ XNUM))
98-
lm. %>.% (function (lm, model = lm[["model"]], vars = names(model))
99-
chart(model, aes_string(x = vars[2], y = vars[1])) +
100-
geom_point() +
101-
stat_smooth(method = "lm", formula = y ~ x))(.)
102-
#snippet 2
103-
summary(lm. <- lm(data = DF, YNUM ~ XNUM + 0))
104-
lm. %>.% (function (lm, model = lm[["model"]], vars = names(model))
105-
chart(model, aes_string(x = vars[2], y = vars[1])) +
106-
geom_point() +
107-
stat_smooth(method = "lm", formula = y ~ x + 0))(.)
108-
91+
summary(lm. <- lm(data = DF, FORMULA))
10992
#### ATTENTION: Hint suivant = solution !####
11093
```
11194

11295
```{r reglin_h2-solution}
96+
## Solution ##
11397
summary(lm. <- lm(data = df1, y ~ x + 0))
114-
lm. %>.% (function (lm, model = lm[["model"]], vars = names(model))
115-
chart(model, aes_string(x = vars[2], y = vars[1])) +
116-
geom_point() +
117-
stat_smooth(method = "lm", formula = y ~ x + 0))(.)
11898
```
11999

120100
```{r reglin_h2-check}
@@ -185,6 +165,11 @@ lm_mult_coef <- broom::tidy(lm_mult)
185165
lm_mult_param <- broom::glance(lm_mult)
186166
```
187167

168+
```{r}
169+
summary(df2)
170+
```
171+
172+
188173
Réalisez une régression linéaire simple sur le jeu de données `df2` de la variable `y` en fonction de la variable `x` et `x1`.
189174

190175
```{r regmulti-prep}
@@ -217,8 +202,6 @@ df2 <- tibble::tibble(
217202
💬 **Un snippet peut vous aider à réaliser cet exercice.**
218203

219204
```{r regmulti_h2, exercise = TRUE, exercise.setup = "regmulti-prep"}
220-
# résumé des données
221-
df2
222205
# régression multiple
223206
summary(lm. <- lm(data = ___, ___ ~ ___))
224207
```
@@ -228,8 +211,6 @@ summary(lm. <- lm(data = DF, Y ~ VAR1 + VAR2))
228211
```
229212

230213
```{r regmulti_h2-solution}
231-
# résumé des données
232-
df2
233214
# régression multiple
234215
summary(lm. <- lm(data = df2, y ~ x + x1))
235216
```

0 commit comments

Comments
 (0)