-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinfoNCE.py
121 lines (95 loc) · 4.22 KB
/
infoNCE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
class InfoNCE(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.07, contrast_mode='one',
base_temperature=0.07):
super(InfoNCE, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 2:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 2 dimensions are required')
if len(features.shape) > 2:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
features = features.unsqueeze(dim=1)
features = F.normalize(features, dim=1)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
# contrast_count = 2 # 16 ,768
# print(features.shape)
# features = features.unsqueeze(dim=1)
# features = F.normalize(features, dim=1)
# features = features.repeat(contrast_count, 1, 1).squeeze(1)
# contrast_feature = features
#-----
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask_pos = mask * logits_mask
mask_neg = (torch.ones_like(mask)-mask) * logits_mask
# compute logits
# similarity = torch.div(
# torch.matmul(anchor_feature, contrast_feature.T),
# self.temperature)
# # for numerical stability
# logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
# logits = anchor_dot_contrast - logits_max.detach()
#-----
logits = torch.mm(anchor_feature, contrast_feature.t()) / self.temperature
logits_min, _ = torch.min(logits, dim=1, keepdim=True)
logits_max, _ = torch.max(logits, dim=1, keepdim=True)
_range = logits_max - logits_min
logits = torch.div(logits - logits_min, _range)
#-----
similarity = torch.exp(logits)
# print(similarity)
pos = torch.sum(similarity * mask_pos, 1)
neg = torch.sum(similarity * mask_neg, 1)
loss = -(torch.mean(torch.log(pos / (pos + neg+1))))
return loss