forked from mapillary/seamseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_vistas.py
240 lines (187 loc) · 7.53 KB
/
prepare_vistas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import glob
import json
import shutil
from multiprocessing import Pool, Value, Lock
from os import path, mkdir
import numpy as np
import tqdm
import umsgpack
from PIL import Image
from pycococreatortools import pycococreatortools as pct
parser = argparse.ArgumentParser(description="Convert Vistas to seamseg format")
parser.add_argument("root_dir", metavar="ROOT_DIR", type=str, help="Root directory of Vistas")
parser.add_argument("out_dir", metavar="OUT_DIR", type=str, help="Output directory")
_SPLITS = ["training", "validation"]
_IMAGES_DIR, _IMAGES_EXT = "images", "jpg"
_LABELS_DIR, _LABELS_EXT = "instances", "png"
def main(args):
print("Loading Vistas from", args.root_dir)
# Process meta-data
categories, version = _load_metadata(args.root_dir)
cat_id_mvd_to_iss, cat_id_iss_to_mvd, num_stuff, num_thing = _cat_id_maps(categories)
# Prepare directories
lst_dir = path.join(args.out_dir, "lst")
_ensure_dir(lst_dir)
coco_dir = path.join(args.out_dir, "coco")
_ensure_dir(coco_dir)
# Run conversion
images = []
for split in _SPLITS:
print("Converting", split, "...")
# Find all image ids in the split
img_ids = []
for name in glob.glob(path.join(args.root_dir, split, _IMAGES_DIR, "*." + _IMAGES_EXT)):
_, name = path.split(name)
img_ids.append(name[:-(1 + len(_IMAGES_EXT))])
# Write the list file
with open(path.join(lst_dir, split + ".txt"), "w") as fid:
fid.writelines(img_id + "\n" for img_id in img_ids)
# Convert to COCO detection format
coco_out = {
"info": {"version": str(version)},
"images": [],
"categories": [],
"annotations": []
}
for cat_id, cat_meta in enumerate(categories):
if cat_meta["instances"]:
coco_out["categories"].append({
"id": cat_id_mvd_to_iss[cat_id],
"name": cat_meta["name"]
})
# Process images in parallel
worker = _Worker(categories, cat_id_mvd_to_iss, path.join(args.root_dir, split), args.out_dir)
with Pool(initializer=_init_counter, initargs=(_Counter(0),)) as pool:
total = len(img_ids)
for img_meta, coco_img, coco_ann in tqdm.tqdm(pool.imap(worker, img_ids, 8), total=total):
images.append(img_meta)
# COCO annotation
coco_out["images"].append(coco_img)
coco_out["annotations"] += coco_ann
# Write COCO detection format annotation
with open(path.join(coco_dir, split + ".json"), "w") as fid:
json.dump(coco_out, fid)
# Write meta-data
print("Writing meta-data")
meta = {
"images": images,
"meta": {
"num_stuff": num_stuff,
"num_thing": num_thing
}
}
meta["meta"]["categories"] = ["" for _ in range(num_stuff + num_thing)]
meta["meta"]["palette"] = [[0, 0, 0] for _ in range(num_stuff + num_thing)]
meta["meta"]["original_ids"] = [0 for _ in range(num_stuff + num_thing)]
for cat_id, cat_meta in enumerate(categories):
if not cat_meta["evaluate"]:
continue
mapped_id = cat_id_mvd_to_iss[cat_id]
meta["meta"]["categories"][mapped_id] = cat_meta["name"]
meta["meta"]["palette"][mapped_id] = cat_meta["color"]
meta["meta"]["original_ids"][mapped_id] = cat_id
with open(path.join(args.out_dir, "metadata.bin"), "wb") as fid:
umsgpack.dump(meta, fid, encoding="utf-8")
def _cat_id_maps(categories):
cat_id_mvd_to_iss = dict()
cat_id_iss_to_mvd = dict()
num_thing, num_stuff = 0, 0
# Find stuff
for cat_id, cat_meta in enumerate(categories):
if not cat_meta["evaluate"]:
continue
if not cat_meta["instances"]:
cat_id_mvd_to_iss[cat_id] = num_stuff
cat_id_iss_to_mvd[num_stuff] = cat_id
num_stuff += 1
for cat_id, cat_meta in enumerate(categories):
if not cat_meta["evaluate"]:
continue
if cat_meta["instances"]:
cat_id_mvd_to_iss[cat_id] = num_thing + num_stuff
cat_id_iss_to_mvd[num_thing + num_stuff] = cat_id
num_thing += 1
return cat_id_mvd_to_iss, cat_id_iss_to_mvd, num_stuff, num_thing
def _load_metadata(root_dir):
with open(path.join(root_dir, "config.json")) as fid:
metadata = json.load(fid)
categories = metadata["labels"]
version = metadata["version"]
return categories, version
def _ensure_dir(dir_path):
try:
mkdir(dir_path)
except FileExistsError:
pass
class _Worker:
def __init__(self, categories, cat_id_mvd_to_iss, root_dir, out_dir):
self.categories = categories
self.cat_id_mvd_to_iss = cat_id_mvd_to_iss
self.root_dir = root_dir
self.out_dir = out_dir
def __call__(self, img_id):
coco_ann = []
# Load the annotation
with Image.open(path.join(self.root_dir, _LABELS_DIR, img_id + "." + _LABELS_EXT)) as lbl_img:
lbl = np.array(lbl_img, dtype=np.uint16)
lbl_size = lbl_img.size
mvd_ids = np.unique(lbl)
# Compress the labels and compute cat
lbl_out = np.zeros(lbl.shape, np.int32)
cat = [255]
iscrowd = [0]
for mvd_id in mvd_ids:
mvd_class_id = int(mvd_id // 255)
category = self.categories[mvd_class_id]
# If it's a void class just skip it
if not category["evaluate"]:
continue
# Extract all necessary information
iss_class_id = self.cat_id_mvd_to_iss[mvd_class_id]
iss_instance_id = len(cat)
iscrowd_i = 1 if "group" in category["name"] else 0
mask_i = lbl == mvd_id
# Save ISS format annotation
cat.append(iss_class_id)
iscrowd.append(iscrowd_i)
lbl_out[mask_i] = iss_instance_id
# Compute COCO detection format annotation
if category["instances"]:
category_info = {"id": iss_class_id, "is_crowd": iscrowd_i == 1}
coco_ann_i = pct.create_annotation_info(
counter.increment(), img_id, category_info, mask_i, lbl_size, tolerance=2)
if coco_ann_i is not None:
coco_ann.append(coco_ann_i)
# COCO detection format image annotation
coco_img = pct.create_image_info(img_id, img_id + "." + _IMAGES_EXT, lbl_size)
# Write output
out_msk_dir = path.join(self.out_dir, "msk")
out_img_dir = path.join(self.out_dir, "img")
_ensure_dir(out_msk_dir)
_ensure_dir(out_img_dir)
Image.fromarray(lbl_out).save(path.join(out_msk_dir, img_id + ".png"))
shutil.copy(path.join(self.root_dir, _IMAGES_DIR, img_id + "." + _IMAGES_EXT),
path.join(out_img_dir, img_id + "." + _IMAGES_EXT))
img_meta = {
"id": img_id,
"cat": cat,
"size": (lbl_size[1], lbl_size[0]),
"iscrowd": iscrowd
}
return img_meta, coco_img, coco_ann
def _init_counter(c):
global counter
counter = c
class _Counter:
def __init__(self, initval=0):
self.val = Value('i', initval)
self.lock = Lock()
def increment(self):
with self.lock:
val = self.val.value
self.val.value += 1
return val
if __name__ == "__main__":
main(parser.parse_args())