-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_inference.py
279 lines (239 loc) · 11.1 KB
/
onnx_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import argparse
import os
import sys
import onnxruntime
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util import box_ops, get_tokenlizer
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from groundingdino.util.vl_utils import create_positive_map_from_span
from groundingdino.models.GroundingDINO.bertwarper import generate_masks_with_special_tokens_and_transfer_map
from openvino.runtime import Core
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([[1200, 800]]), # w, h, max_size=1333
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, cpu_only=False):
args = SLConfig.fromfile(model_config_path)
args.device = "cuda" if not cpu_only else "cpu"
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def sig(x):
return 1/(1 + np.exp(-x))
def get_grounding_output(model, img, caption, box_threshold, text_threshold=None, with_logits=True, cpu_only=False, token_spans=None):
assert text_threshold is not None or token_spans is not None, "text_threshould and token_spans should not be None at the same time!"
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
device = "cuda" if not cpu_only else "cpu"
model = model.to(device)
image = img.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
ori_logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
ori_boxes = outputs["pred_boxes"][0] # (nq, 4)
# onnx model input formulation
captions = [caption]
# encoder texts
tokenized = model.tokenizer(captions, padding="longest", return_tensors="pt")
specical_tokens = model.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
(
text_self_attention_masks,
position_ids,
cate_to_token_mask_list,
) = generate_masks_with_special_tokens_and_transfer_map(
tokenized, specical_tokens, model.tokenizer)
if text_self_attention_masks.shape[1] > model.max_text_len:
text_self_attention_masks = text_self_attention_masks[
:, : model.max_text_len, : model.max_text_len]
position_ids = position_ids[:, : model.max_text_len]
tokenized["input_ids"] = tokenized["input_ids"][:, : model.max_text_len]
tokenized["attention_mask"] = tokenized["attention_mask"][:, : model.max_text_len]
tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : model.max_text_len]
inputs = {}
input_img = np.expand_dims(img, 0)
inputs["img"] = input_img
inputs["input_ids"] = tokenized["input_ids"]
inputs["attention_mask"] = tokenized["attention_mask"]
inputs["token_type_ids"] = tokenized["token_type_ids"]
inputs["position_ids"] = position_ids
inputs["text_token_mask"] = text_self_attention_masks
inputs["input_ids"] = to_numpy(tokenized["input_ids"])
inputs["attention_mask"] = to_numpy(tokenized["attention_mask"])
inputs["attention_mask"] = inputs["attention_mask"].astype(bool)
inputs["token_type_ids"] = to_numpy(tokenized["token_type_ids"])
inputs["position_ids"] = to_numpy(position_ids)
inputs["text_token_mask"] = to_numpy(text_self_attention_masks)
#onnx infernce
ort_session = onnxruntime.InferenceSession("groundingdino.onnx")
onnx_logits, onnx_boxes = ort_session.run(
None,
inputs,
)
prediction_logits_ = np.squeeze(onnx_logits, 0) #[0] # prediction_logits.shape = (nq, 256)
prediction_logits_ = sig(prediction_logits_)
prediction_boxes_ = np.squeeze(onnx_boxes, 0) #[0] # prediction_boxes.shape = (nq, 4)
logits = torch.from_numpy(prediction_logits_)
boxes = torch.from_numpy(prediction_boxes_)
print(to_numpy(outputs["pred_logits"]))
print(onnx_logits)
print(to_numpy(outputs["pred_boxes"]))
print(onnx_boxes)
# compare ONNX Runtime and PyTorch results
np.testing.assert_allclose(to_numpy(outputs["pred_logits"]), onnx_logits, rtol=1e-03, atol=1e-05)
np.testing.assert_allclose(to_numpy(outputs["pred_boxes"]), onnx_boxes, rtol=1e-03, atol=1e-05)
print("Onnx model looks good!")
# filter output
if token_spans is None:
logits_filt = logits.cpu().clone()
boxes_filt = boxes.cpu().clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
else:
# given-phrase mode
positive_maps = create_positive_map_from_span(
model.tokenizer(text_prompt),
token_span=token_spans
).to(image.device) # n_phrase, 256
logits_for_phrases = positive_maps @ logits.T # n_phrase, nq
all_logits = []
all_phrases = []
all_boxes = []
for (token_span, logit_phr) in zip(token_spans, logits_for_phrases):
# get phrase
phrase = ' '.join([caption[_s:_e] for (_s, _e) in token_span])
# get mask
filt_mask = logit_phr > box_threshold
# filt box
all_boxes.append(boxes[filt_mask])
# filt logits
all_logits.append(logit_phr[filt_mask])
if with_logits:
logit_phr_num = logit_phr[filt_mask]
all_phrases.extend([phrase + f"({str(logit.item())[:4]})" for logit in logit_phr_num])
else:
all_phrases.extend([phrase for _ in range(len(filt_mask))])
boxes_filt = torch.cat(all_boxes, dim=0).cpu()
pred_phrases = all_phrases
return boxes_filt, pred_phrases
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
if __name__ == "__main__":
parser = argparse.ArgumentParser("OpenVINO Grounding DINO example", add_help=True)
parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file")
parser.add_argument(
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file")
parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--token_spans", type=str, default=None, help=
"The positions of start and end positions of phrases of interest. \
For example, a caption is 'a cat and a dog', \
if you would like to detect 'cat', the token_spans should be '[[[2, 5]], ]', since 'a cat and a dog'[2:5] is 'cat'. \
if you would like to detect 'a cat', the token_spans should be '[[[0, 1], [2, 5]], ]', since 'a cat and a dog'[0:1] is 'a', and 'a cat and a dog'[2:5] is 'cat'. \
")
#parser.add_argument("--device", "-d", type=str, default="CPU", help="set device, default: CPU")
args = parser.parse_args()
# cfg
config_file = args.config_file # change the path of the model config file
checkpoint_path = args.checkpoint_path # change the path of the model
image_path = args.image_path
text_prompt = args.text_prompt
output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.text_threshold
token_spans = args.token_spans
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, checkpoint_path)
# visualize raw image
#image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# set the text_threshold to None if token_spans is set.
if token_spans is not None:
text_threshold = None
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, token_spans=eval(token_spans))
print("Using token_spans. Set the text_threshold to None.")
else:
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, token_spans=None)
# visualize pred
size = image_pil.size
pred_dict = {
"boxes": boxes_filt,
"size": [size[1], size[0]], # H,W
"labels": pred_phrases,
}
# import ipdb; ipdb.set_trace()
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
image_with_box.save(os.path.join(output_dir, "pred.jpg"))