|
3 | 3 | import pandas as pd
|
4 | 4 | import plotly.graph_objects as go
|
5 | 5 | import json
|
| 6 | +from pyodide.http import open_url |
6 | 7 |
|
7 |
| -# df_ukr_pop_region_all_flows_2021 = pd.read_csv('./app_files/ukr_pop_region_all_flows_total_2021.csv', sep=",", decimal=".") |
8 |
| -# df_ukr_pop_region_all_flows_2020 = pd.read_csv('./app_files/ukr_pop_region_all_flows_total_2020.csv', sep=",", decimal=".") |
9 |
| -# df_ukr_pop_region_all_flows_2019 = pd.read_csv('./app_files/ukr_pop_region_all_flows_total_2019.csv', sep=",", decimal=".") |
10 |
| -# df_ukr_pop_region_inter_state_flows_2021 = pd.read_csv('./app_files/ukr_pop_region_inter_state_total_2021.csv', sep=",", decimal=".") |
11 |
| -# df_ukr_pop_region_inter_state_flows_2020 = pd.read_csv('./app_files/ukr_pop_region_inter_state_total_2020.csv', sep=",", decimal=".") |
12 |
| -# df_ukr_pop_region_inter_state_flows_2019 = pd.read_csv('./app_files/ukr_pop_region_inter_state_total_2019.csv', sep=",", decimal=".") |
13 |
| -# df_ukr_population = pd.read_csv('./app_files/ukr_pop_present_resident_age.csv', sep=",", decimal=".") |
| 8 | +df_ukr_pop_region_all_flows_2021 = pd.read_csv(open_url('./app_files/ukr_pop_region_all_flows_total_2021.csv')) |
| 9 | +df_ukr_pop_region_all_flows_2020 = pd.read_csv(open_url('./app_files/ukr_pop_region_all_flows_total_2020.csv')) |
| 10 | +df_ukr_pop_region_all_flows_2019 = pd.read_csv(open_url('./app_files/ukr_pop_region_all_flows_total_2019.csv')) |
| 11 | +df_ukr_pop_region_inter_state_flows_2021 = pd.read_csv(open_url('./app_files/ukr_pop_region_inter_state_total_2021.csv')) |
| 12 | +df_ukr_pop_region_inter_state_flows_2020 = pd.read_csv(open_url('./app_files/ukr_pop_region_inter_state_total_2020.csv')) |
| 13 | +df_ukr_pop_region_inter_state_flows_2019 = pd.read_csv(open_url('./app_files/ukr_pop_region_inter_state_total_2019.csv')) |
| 14 | +df_ukr_population = pd.read_csv(open_url('./app_files/ukr_pop_present_resident_age.csv')) |
14 | 15 |
|
15 |
| -#with open('./app_files/geoBoundaries-UKR-ADM1.geojson', 'r', encoding='utf-8') as geo_file: |
16 |
| -# ukraine_geojson = json.load(geo_file) |
17 |
| -base_path = Path('./docs') |
18 |
| -df_ukr_pop_region_all_flows_2021 = pd.read_csv(base_path / 'ukr_pop_region_all_flows_total_2021.csv', sep=",", decimal=".") |
19 |
| -df_ukr_pop_region_all_flows_2020 = pd.read_csv(base_path / 'ukr_pop_region_all_flows_total_2020.csv', sep=",", decimal=".") |
20 |
| -df_ukr_pop_region_all_flows_2019 = pd.read_csv(base_path / 'ukr_pop_region_all_flows_total_2019.csv', sep=",", decimal=".") |
21 |
| -df_ukr_pop_region_inter_state_flows_2021 = pd.read_csv(base_path / 'ukr_pop_region_inter_state_total_2021.csv', sep=",", decimal=".") |
22 |
| -df_ukr_pop_region_inter_state_flows_2020 = pd.read_csv(base_path / 'ukr_pop_region_inter_state_total_2020.csv', sep=",", decimal=".") |
23 |
| -df_ukr_pop_region_inter_state_flows_2019 = pd.read_csv(base_path / 'ukr_pop_region_inter_state_total_2019.csv', sep=",", decimal=".") |
24 |
| -df_ukr_population = pd.read_csv(base_path / 'ukr_pop_present_resident_age.csv', sep=",", decimal=".") |
| 16 | +with open_url('./app_files/geoBoundaries-UKR-ADM1.geojson', 'r', encoding='utf-8') as geo_file: |
| 17 | + ukraine_geojson = json.load(geo_file) |
| 18 | +# base_path = Path('./docs') |
| 19 | +# df_ukr_pop_region_all_flows_2021 = pd.read_csv(base_path / 'ukr_pop_region_all_flows_total_2021.csv', sep=",", decimal=".") |
| 20 | +# df_ukr_pop_region_all_flows_2020 = pd.read_csv(base_path / 'ukr_pop_region_all_flows_total_2020.csv', sep=",", decimal=".") |
| 21 | +# df_ukr_pop_region_all_flows_2019 = pd.read_csv(base_path / 'ukr_pop_region_all_flows_total_2019.csv', sep=",", decimal=".") |
| 22 | +# df_ukr_pop_region_inter_state_flows_2021 = pd.read_csv(base_path / 'ukr_pop_region_inter_state_total_2021.csv', sep=",", decimal=".") |
| 23 | +# df_ukr_pop_region_inter_state_flows_2020 = pd.read_csv(base_path / 'ukr_pop_region_inter_state_total_2020.csv', sep=",", decimal=".") |
| 24 | +# df_ukr_pop_region_inter_state_flows_2019 = pd.read_csv(base_path / 'ukr_pop_region_inter_state_total_2019.csv', sep=",", decimal=".") |
| 25 | +# df_ukr_population = pd.read_csv(base_path / 'ukr_pop_present_resident_age.csv', sep=",", decimal=".") |
25 | 26 |
|
26 | 27 | geo_path = base_path / 'geoBoundaries-UKR-ADM1.geojson'
|
27 | 28 | with open(geo_path, 'r', encoding='utf-8') as geo_file:
|
|
0 commit comments