-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_conll.py
397 lines (321 loc) · 15.2 KB
/
main_conll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# coding=utf-8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition
on CoNLL-2003 (Bert or Roberta). """
import sys
sys.path.append('../')
import fitlog
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from tqdm import tqdm, trange
from transformers import AutoConfig, AutoTokenizer
from eval_metric import span_f1_prune
from engine_utils import *
from utils.datasets import collate_fn, get_labels, load_examples, SpanNerDataset
from models.bn_bert_ner import BertSpanNerBN
CURRENT_DIR = os.path.split(os.path.abspath(__file__))[0]
TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"]
trans_list = ["EntityTyposSwap", "OOV"]
robust_dir = os.path.join(CURRENT_DIR, 'data/conll2003/trans_data/')
def get_args():
parser = arg_parse()
# Required parameters
parser.add_argument(
"--data_dir",
# default="/root/MINER2/MINER/data/conll2003/origin/",
default="/root/MINER2/MINER/data/conll_debug/",
type=str,
help="The input data dir. Should contain the training files for the "
"CoNLL-2003 NER task.",
)
parser.add_argument(
"--output_dir",
default="/root/MINER2/MINER/out/bert_uncase/conll_debug/",
type=str,
help="The output directory where the model predictions and "
"checkpoints will be written.",
)
# fitlog debug settings, --debug for True, otherwise for False
parser.add_argument("--debug", action="store_true",
help="Whether record results and params.")
# Other parameters
parser.add_argument("--gpu_id", default=3, type=int,
help="GPU number id")
parser.add_argument(
"--epoch", default=10, type=float,
help="Total number of training epochs to perform."
)
# gama -> beta, r -> gama
parser.add_argument(
"--beta", default=1e-3, type=float,
help="weights of oov regular"
)
parser.add_argument(
"--gama", default=1e-2, type=float,
help="weights of InfoNCE"
)
# 0 means typos, 1 means switch
parser.add_argument(
"--switch_ratio", default=0.5, type=float,
help="Entity switch ratio."
)
# training parameters
parser.add_argument("--batch_size", default=64, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--do_train", action="store_true",
help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true",
help="Whether to run eval on the dev set.")
parser.add_argument("--do_predict", action="store_true",
help="Whether to run predictions on the test set.")
# parser.add_argument("--do_robustness_eval", action="store_true",
# help="Whether to evaluate robustness")
args = parser.parse_args()
# Path to a file containing all labels.
args.labels = os.path.join(args.data_dir, './labels.txt')
# Path to a file containing import substring of each category
args.pmi_json = os.path.join(args.data_dir, './pmi.json')
# Path to a file containing entities of each category
args.entity_json = os.path.join(args.data_dir, './entity.json')
torch.cuda.set_device(args.gpu_id)
device = torch.device("cuda", args.gpu_id)
args.device = device
return args
args = get_args()
# setup fitlog, debug mode, skip recording
if args.debug is True:
fitlog.debug()
fitlog.commit(__file__) # auto commit your codes
fitlog.set_log_dir('logs/') # set the logging directory
fitlog.add_hyper(args) # 通过这种方式记录ArgumentParser的参数
fitlog.add_hyper_in_file(__file__) # 记录本文件中写死的超参数
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.warning("Process device: %s", args.device)
def train(args, model, tokenizer, labels):
""" Train the model """
train_examples = load_examples(args.data_dir, mode="train", tokenizer=tokenizer)
training_steps = (len(train_examples) - 1 / args.epoch + 1) * args.epoch
# Prepare optimizer and schedule (linear warmup and decay)
optimizer, scheduler = prepare_optimizer_scheduler(args, model, training_steps)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Num Epochs = %d", args.epoch)
logger.info(" Total train batch size = %d", args.batch_size)
logger.info(" Total optimization steps = %d", training_steps)
global_step = 0
best_score = 0.0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.epoch), desc="Epoch")
epoch_num = 0
for _ in train_iterator:
epoch_num += 1
train_dataset = SpanNerDataset(train_examples, args=args, tokenizer=tokenizer, labels=labels)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset,
sampler=train_sampler,
batch_size=args.batch_size,
collate_fn=collate_fn)
logger.info("Training epoch num {0}".format(epoch_num))
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, batch in enumerate(epoch_iterator):
model.train()
ori_fea_tensors = {k: v.to(args.device) for k, v in batch[0].items()}
cont_fea_tensors = {k: v.to(args.device) for k, v in batch[1].items()}
outputs = model(ori_fea_tensors, cont_fea_tensors)
loss_dic = outputs[1]
loss = loss_dic['loss']
loss.backward()
fitlog.add_loss(loss.tolist(), name="Loss", step=global_step)
tr_loss += loss.item()
description = "".join(["{0}:{1}, ".format(k, round(v.item(), 3))
for k, v in loss_dic.items()]).strip(', ')
epoch_iterator.set_description(description)
# clip gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if global_step % len(train_dataloader) == 0:
# default evaluate during training
results, _ = evaluate(
args, model, tokenizer, labels,
mode="dev", prefix="{}".format(global_step)
)
# add fitlog
fitlog.add_metric({"dev" + '-' + "f1": results['span_f1']}, step=global_step)
if best_score < results['span_f1']:
best_score = results['span_f1']
output_dir = os.path.join(args.output_dir, "best_checkpoint")
else:
output_dir = args.output_dir
model_save(args, output_dir, model, tokenizer)
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, labels, mode='test', prefix='', examples=None):
eval_examples = examples if examples else load_examples(args.data_dir, mode=mode, tokenizer=tokenizer)
eval_dataset = SpanNerDataset(eval_examples, args=args, tokenizer=tokenizer, labels=labels, dev=True)
# accelerate evaluation speed
args.eval_batch_size = 256
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset,
sampler=eval_sampler,
batch_size=args.eval_batch_size,
collate_fn=collate_fn)
logger.info("***** Running evaluation {0} {1} *****".format(mode, prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
nb_eval_steps = 0
dev_outputs = []
model.eval() # close drop out, batch normalization
for batch in tqdm(eval_dataloader, desc="Evaluating"):
ori_fea_tensors = {k: v.to(args.device) for k, v in batch[0].items()}
cont_fea_tensors = {k: v.to(args.device) for k, v in batch[1].items()}
with torch.no_grad():
# without labels, direct out tags
predicts, _ = model(ori_fea_tensors, cont_fea_tensors)
# span_f1_prune(all_span_idxs, predicts, span_label_ltoken, real_span_mask_ltoken)
span_f1s, pred_label_idx = span_f1_prune(
ori_fea_tensors['span_word_idxes'],
predicts[0],
ori_fea_tensors['span_labels'],
ori_fea_tensors['span_masks']
)
outputs = {
'span_f1s': span_f1s,
'pred_label_idx': pred_label_idx,
'all_span_idxs': ori_fea_tensors['span_word_idxes'],
'span_label_ltoken': ori_fea_tensors['span_labels']
}
dev_outputs.append(outputs)
nb_eval_steps += 1
all_counts = torch.stack([x[f'span_f1s'] for x in dev_outputs]).sum(0)
correct_pred, total_pred, total_golden = all_counts
print('correct_pred, total_pred, total_golden: ', correct_pred, total_pred, total_golden)
precision = correct_pred / (total_pred + 1e-10)
recall = correct_pred / (total_golden + 1e-10)
f1 = precision * recall * 2 / (precision + recall + 1e-10)
res = {
'span_precision': round(precision.cpu().numpy().tolist(), 5),
'span_recall': round(recall.cpu().numpy().tolist(), 5),
'span_f1': round(f1.cpu().numpy().tolist(), 5)
}
logger.info("{0} metric is {1}".format(prefix, res))
# save metrics result
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
with open(output_eval_file, "a") as writer:
logger.info("***** Eval results {0} {1} *****".format(mode, prefix))
writer.write("***** Eval results {0} {1} *****\n".format(mode, prefix))
for key in sorted(res.keys()):
logger.info("{} = {}".format(key, str(res[key])))
writer.write("{} = {}\n".format(key, str(res[key])))
return res, dev_outputs # dev_outputs is a list of outputs, which is [outputs1, outputs2 ... ]
# return average f1 in various robust testset
def robust_evaluate(args, ckpt_dir, config, tokenizer, labels,
prefix="best ckpt", model=None):
robust_f1 = {}
# eval best checkpoint
for trans in trans_list:
trans_dir = os.path.join(robust_dir, trans, "trans")
assert os.path.exists(trans_dir)
trans_examples = load_examples(trans_dir, 'test', tokenizer)
results, predictions = evaluate(args, model, tokenizer, labels,
examples=trans_examples,
prefix="{0} {1}".format(prefix, trans))
robust_f1[trans] = results["span_f1"]
# Save predictions
if prefix == "best ckpt":
test_file = os.path.join(trans_dir, "test.txt")
out_trans_predictions = os.path.join(
ckpt_dir, "{0}_{1}_predictions.txt".format(prefix, trans)
)
predictions_save(test_file, predictions, out_trans_predictions, labels)
logger.info(
"Finish evaluate Robustness of {0} {1} transformation".format(prefix, trans)
)
return robust_f1
def fast_evaluate(args, ckpt_dir, config, tokenizer, labels,
mode, prefix='', model=None):
if not model:
model = BertSpanNerBN.from_pretrained(
ckpt_dir,
config=config,
num_labels=len(labels),
args=args
)
model.to(args.device)
results, predictions = evaluate(args, model, tokenizer, labels, mode=mode, prefix=prefix)
output_eval_file = os.path.join(ckpt_dir, "{0}_results.txt".format(mode))
with open(output_eval_file, "a") as writer:
writer.write('***** Predict in {0} {1} dataset *****\n'.format(mode, prefix))
return results, predictions
def main():
set_seed(args) # Added here for reproduce
# modified, Prepare CONLL-2003 task
labels = get_labels(args.labels)
# ------------config--------------
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
id2label={str(i): label for i, label in enumerate(labels)},
label2id={label: i for i, label in enumerate(labels)},
cache_dir=None
)
args.model_type = config.model_type.lower()
# ------------tokenizer--------------
tokenizer_args = {k: v for k, v in vars(args).items()
if v is not None and k in TOKENIZER_ARGS}
logger.info("Tokenizer arguments: %s", tokenizer_args)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
cache_dir=None,
**tokenizer_args,
)
# ------------load pre-trained model--------------
model = BertSpanNerBN.from_pretrained(args.model_name_or_path, config=config,
num_labels=len(labels), args=args)
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# ------------Training------------
if args.do_train:
global_step, tr_loss = train(args, model, tokenizer, labels)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
best_ckpt_dir = os.path.join(args.output_dir, "best_checkpoint")
# ------------Evaluation------------
if args.do_eval:
# eval best checkpoint
fast_evaluate(args, best_ckpt_dir, config, tokenizer, labels,
mode="dev", prefix="best ckpt")
# ------------Prediction------------
if args.do_predict:
# eval best checkpoint
results, predictions = fast_evaluate(args, best_ckpt_dir, config, tokenizer,
labels, mode="test", prefix="best ckpt")
fitlog.add_best_metric({"test": {"best_ckpt_f1": results["span_f1"]}})
# Save predictions
test_file = os.path.join(args.data_dir, "test.txt")
output_test_predictions = os.path.join(best_ckpt_dir, "test_predictions.txt")
predictions_save(test_file, predictions, output_test_predictions, labels)
rob_results = robust_evaluate(args, None, None, tokenizer, labels,
model=model, prefix="best ckpt")
for trans in rob_results:
fitlog.add_best_metric({trans + '-' + "f1": rob_results[trans]})
if __name__ == "__main__":
main()
fitlog.finish()