-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
147 lines (111 loc) · 4.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = (y_hat.type(y.dtype) == y)
return torch.sum(cmp)
def evaluate_accuracy(net, data_iter, rnn=False):
net.eval() # 设置为评估模式
# 正确预测的数量,总预测的数量
device = torch.device("cuda:0")
metric = torch.zeros(2, device=device)
with torch.no_grad():
for X, y in data_iter:
if rnn:
X = X.permute(1, 0, 2)
net.reset_state()
metric[0] += accuracy(net(X), y)
metric[1] += y.numel()
return metric[0] / metric[1]
def train_net(net, loss, trainer, data_iter, epochs, path, k_ratio, scheduler=None):
train_iter, val_iter, test_iter = data_iter
net.apply_masks(next(iter(train_iter)), loss, k_ratio)
print("true sparsity: %f%%" % (net.sparsity_ratio * 100))
val_acc_best = 0
for epoch in range(epochs):
net.train()
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
trainer.zero_grad() # 清除了优化器中的grad
l.backward() # 通过进行反向传播来计算梯度
trainer.step() # 通过调用优化器来更新模型参数
if scheduler:
scheduler.step()
val_acc = evaluate_accuracy(net, val_iter)
if val_acc > val_acc_best:
val_acc_best = val_acc
torch.save(net.state_dict(), path)
print("epoch: %d val_acc: %.2f%%" % (epoch + 1, val_acc * 100))
if val_acc < val_acc_best:
net.load_state_dict(torch.load(path))
return 1 - evaluate_accuracy(net, test_iter)
def train_rnn(net, loss, trainer, data_iter, epochs, path, k_ratio, scheduler=None):
train_iter, val_iter, test_iter = data_iter
X, y = next(iter(train_iter))
net.apply_masks((X.permute(1, 0, 2), y), loss, k_ratio)
print("true sparsity: %f%%" % (net.sparsity_ratio * 100))
val_acc_best = 0
for epoch in range(epochs):
net.train()
for X, y in train_iter:
net.reset_state()
y_hat = net(X.permute(1, 0, 2))
l = loss(y_hat, y)
trainer.zero_grad() # 清除了优化器中的grad
l.backward() # 通过进行反向传播来计算梯度
trainer.step() # 通过调用优化器来更新模型参数
if scheduler:
scheduler.step()
val_acc = evaluate_accuracy(net, val_iter, rnn=True)
if val_acc > val_acc_best:
val_acc_best = val_acc
torch.save(net.state_dict(), path)
print("epoch: %d val_acc: %.2f%%" % (epoch + 1, val_acc * 100))
if val_acc < val_acc_best:
net.load_state_dict(torch.load(path))
return 1 - evaluate_accuracy(net, test_iter, rnn=True)
def train_net_t(net, loss, trainer, data_iter, epochs, path, k_ratio, scheduler=None):
train_iter, val_iter, test_iter = data_iter
# net.apply_masks(next(iter(train_iter)), loss, k_ratio)
# print("true sparsity: %f%%" % (net.sparsity_ratio * 100))
val_acc_best = 0
for epoch in range(epochs):
net.train()
i = -1
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
i += 1
trainer.zero_grad() # 清除了优化器中的grad
l.backward() # 通过进行反向传播来计算梯度
net.save_grad()
trainer.step() # 通过调用优化器来更新模型参数
if i == 0:
net.remask(k_ratio, True)
else:
net.remask(k_ratio)
if scheduler:
scheduler.step()
net.cal_mask_trans()
val_acc = evaluate_accuracy(net, val_iter)
if val_acc > val_acc_best:
val_acc_best = val_acc
torch.save(net.state_dict(), path)
print("epoch: %d val_acc: %.2f%%" % (epoch + 1, val_acc * 100))
if val_acc < val_acc_best:
net.load_state_dict(torch.load(path))
return 1 - evaluate_accuracy(net, test_iter)
def train_show_loss(net, loss, trainer, train_iter, epochs):
loss_history = []
for epoch in range(epochs):
net.train()
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
loss_history.append(l.item())
trainer.zero_grad() # 清除了优化器中的grad
l.backward() # 通过进行反向传播来计算梯度
trainer.step() # 通过调用优化器来更新模型参数
print("epoch: %d loss: %.2f" % (epoch + 1, loss_history[-1]))
return torch.tensor(loss_history)