scikit-stan
will enable you to use various bayesian models based on
stan
(http://mc-stan.org) and pystan
with an elegant interface like a
scikit-learn
or keras
.
import numpy as np
from skstan.regression.linear_models import LogisticRegression
if __name__ == '__main__':
x = np.array(
[
[1,2,3,],
[1,2,7,],
[1,0,3,],
[1,1,3,],
[3,7,3,],
]
)
y = np.array([0,0,0,0,1])
glm = LogisticRegression(shrinkage=10, chains=8)
fit = glm.fit(x, y)
Then we got result object fit
, and field stanfit
is a stanfit object of pystan.
print(fit.stanfit)
It gives following
Inference for Stan model: anon_model_f63cd5ccdd67c22034b2490ae4c9cdd1.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha[0] 2.23 0.29 8.88 -14.39 -3.87 2.02 8.07 20.67 966 1.0
alpha[1] 7.81 0.18 5.29 -1.08 4.01 7.48 11.23 19.01 880 1.0
alpha[2] -9.79 0.22 5.87 -22.91 -13.41 -9.37 -5.38 -0.17 728 1.0
beta -2.48 0.29 9.8 -22.63 -9.03 -2.3 3.99 16.91 1146 1.0
yp[0] -13.99 0.32 11.19 -40.69 -20.24 -11.35 -5.42 0.3 1259 1.0
yp[1] -53.15 1.14 32.08 -128.4 -71.99 -48.46 -29.35 -5.24 790 1.0
yp[2] -29.61 0.6 16.66 -67.24 -39.44 -27.97 -17.0 -4.37 771 1.0
yp[3] -21.8 0.44 13.17 -52.98 -29.03 -19.57 -11.91 -3.23 894 1.0
yp[4] 29.51 0.69 24.68 0.58 10.3 23.36 42.72 90.17 1276 1.0
lp__ -2.16 0.05 1.48 -5.93 -2.9 -1.81 -1.07 -0.32 956 1.0
Samples were drawn using NUTS at Thu Apr 13 07:52:33 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
Result object of skstan
also have prediction methods.
Predicted values can be obtained as samples from distribution with a predict_dist
method, because it is bayesian model.
yp_dist = fit.predict_dist(x)
print(yp_dist)
Then we got
array([[ 2.63886682e-08, 5.23976746e-04, 5.54863097e-05, ...,
2.46008578e-08, 3.74830192e-01, 3.45994043e-03],
[ 1.07746578e-22, 1.01664809e-18, 4.12813154e-26, ...,
5.64992544e-19, 7.24386097e-12, 1.75795155e-23],
[ 8.04688037e-22, 4.44522113e-12, 1.42920488e-11, ...,
7.71565191e-13, 5.13118658e-05, 4.26331280e-05],
[ 4.60810657e-15, 4.82743551e-08, 2.81612678e-08, ...,
1.37772153e-10, 5.51614998e-03, 3.84594197e-04],
[ 9.99999998e-01, 1.00000000e+00, 1.00000000e+00, ...,
9.99965378e-01, 1.00000000e+00, 1.00000000e+00]])
So let's check the histgram of first row with pandas.Series
.
import pandas as pd
pd.Series(yp_dist[0]).hist(bins=20)
If you need a median of samples, you can get it with just predict
method
yp = fit.predict(x)
print(yp)
gives
array([ 1.17280235e-05, 9.01419773e-22, 7.16023732e-13,
3.18368664e-09, 1.00000000e+00])
Installers for the latest released version are available at PyPI.
pip3 install skstan
git clone https://github.com/BayesianFreaks/scikit-stan
cd scikit-stan
python3 setup.py install
pip3 uninstall scikit-stan
Are you joking?
We can't touch you because we are living in the future from you, and you're living in past ages. Please say hello to Nobunaga Oda.
We will always use newest features of the latest version of python, so you should use the latest version of python.
- Linear Regrassion
- Poisson Regression
- Logistic Regression
- Gamma Regression
- GLMM
- etc...
- AR Model
- MA Model
- ARMA Model
- ARIMA Model
- ARCH Model
- GARCH Model
- TAR Model
- State Space Model
- or Some Dynamic Regression Models
- etc...
- Gaussian Mixture Model
- Latent Dirichlet Allocation
- etc...
- Modeling about online-advertisement
- Decompose time series data
- Empirical Bayesian Estimation