forked from frdel/agent-zero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent.py
298 lines (235 loc) · 13.7 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from dataclasses import dataclass, field
import time, importlib, inspect, os, json
from typing import Any, Optional, Dict
from python.helpers import extract_tools, rate_limiter, files, errors
from python.helpers.print_style import PrintStyle
from langchain.schema import AIMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.language_models.llms import BaseLLM
from langchain_core.embeddings import Embeddings
@dataclass
class AgentConfig:
chat_model: BaseChatModel | BaseLLM
utility_model: BaseChatModel | BaseLLM
embeddings_model:Embeddings
memory_subdir: str = ""
auto_memory_count: int = 3
auto_memory_skip: int = 2
rate_limit_seconds: int = 60
rate_limit_requests: int = 15
rate_limit_input_tokens: int = 1000000
rate_limit_output_tokens: int = 0
msgs_keep_max: int = 25
msgs_keep_start: int = 5
msgs_keep_end: int = 10
response_timeout_seconds: int = 60
max_tool_response_length: int = 3000
code_exec_docker_enabled: bool = True
code_exec_docker_name: str = "agent-zero-exe"
code_exec_docker_image: str = "frdel/agent-zero-exe:latest"
code_exec_docker_ports: dict[str,int] = field(default_factory=lambda: {"22/tcp": 50022})
code_exec_docker_volumes: dict[str, dict[str, str]] = field(default_factory=lambda: {files.get_abs_path("work_dir"): {"bind": "/root", "mode": "rw"}})
code_exec_ssh_enabled: bool = True
code_exec_ssh_addr: str = "localhost"
code_exec_ssh_port: int = 50022
code_exec_ssh_user: str = "root"
code_exec_ssh_pass: str = "toor"
additional: Dict[str, Any] = field(default_factory=dict)
class Agent:
paused=False
streaming_agent=None
def __init__(self, number:int, config: AgentConfig):
# agent config
self.config = config
# non-config vars
self.number = number
self.agent_name = f"Agent {self.number}"
self.system_prompt = files.read_file("./prompts/agent.system.md", agent_name=self.agent_name)
self.tools_prompt = files.read_file("./prompts/agent.tools.md")
self.history = []
self.last_message = ""
self.intervention_message = ""
self.intervention_status = False
self.rate_limiter = rate_limiter.RateLimiter(max_calls=self.config.rate_limit_requests,max_input_tokens=self.config.rate_limit_input_tokens,max_output_tokens=self.config.rate_limit_output_tokens,window_seconds=self.config.rate_limit_seconds)
self.data = {} # free data object all the tools can use
os.chdir(files.get_abs_path("./work_dir")) #change CWD to work_dir
def message_loop(self, msg: str):
try:
printer = PrintStyle(italic=True, font_color="#b3ffd9", padding=False)
user_message = files.read_file("./prompts/fw.user_message.md", message=msg)
self.append_message(user_message, human=True) # Append the user's input to the history
memories = self.fetch_memories(True)
while True: # let the agent iterate on his thoughts until he stops by using a tool
Agent.streaming_agent = self #mark self as current streamer
agent_response = ""
self.intervention_status = False # reset interventon status
try:
system = self.system_prompt + "\n\n" + self.tools_prompt
memories = self.fetch_memories()
if memories: system+= "\n\n"+memories
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content=system),
MessagesPlaceholder(variable_name="messages") ])
inputs = {"messages": self.history}
chain = prompt | self.config.chat_model
formatted_inputs = prompt.format(messages=self.history)
tokens = int(len(formatted_inputs)/4)
self.rate_limiter.limit_call_and_input(tokens)
# output that the agent is starting
PrintStyle(bold=True, font_color="green", padding=True, background_color="white").print(f"{self.agent_name}: Starting a message:")
for chunk in chain.stream(inputs):
if self.handle_intervention(agent_response): break # wait for intervention and handle it, if paused
if isinstance(chunk, str): content = chunk
elif hasattr(chunk, "content"): content = str(chunk.content)
else: content = str(chunk)
if content:
printer.stream(content) # output the agent response stream
agent_response += content # concatenate stream into the response
self.rate_limiter.set_output_tokens(int(len(agent_response)/4))
if not self.handle_intervention(agent_response):
if self.last_message == agent_response: #if assistant_response is the same as last message in history, let him know
self.append_message(agent_response) # Append the assistant's response to the history
warning_msg = files.read_file("./prompts/fw.msg_repeat.md")
self.append_message(warning_msg, human=True) # Append warning message to the history
PrintStyle(font_color="orange", padding=True).print(warning_msg)
else: #otherwise proceed with tool
self.append_message(agent_response) # Append the assistant's response to the history
tools_result = self.process_tools(agent_response) # process tools requested in agent message
if tools_result: return tools_result #break the execution if the task is done
# Forward errors to the LLM, maybe he can fix them
except Exception as e:
error_message = errors.format_error(e)
msg_response = files.read_file("./prompts/fw.error.md", error=error_message) # error message template
self.append_message(msg_response, human=True)
PrintStyle(font_color="red", padding=True).print(msg_response)
finally:
Agent.streaming_agent = None # unset current streamer
def get_data(self, field:str):
return self.data.get(field, None)
def set_data(self, field:str, value):
self.data[field] = value
def append_message(self, msg: str, human: bool = False):
message_type = "human" if human else "ai"
if self.history and self.history[-1].type == message_type:
self.history[-1].content += "\n\n" + msg
else:
new_message = HumanMessage(content=msg) if human else AIMessage(content=msg)
self.history.append(new_message)
self.cleanup_history(self.config.msgs_keep_max, self.config.msgs_keep_start, self.config.msgs_keep_end)
if message_type=="ai":
self.last_message = msg
def concat_messages(self,messages):
return "\n".join([f"{msg.type}: {msg.content}" for msg in messages])
def send_adhoc_message(self, system: str, msg: str, output_label:str):
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content=system),
HumanMessage(content=msg)])
chain = prompt | self.config.utility_model
response = ""
printer = None
if output_label:
PrintStyle(bold=True, font_color="orange", padding=True, background_color="white").print(f"{self.agent_name}: {output_label}:")
printer = PrintStyle(italic=True, font_color="orange", padding=False)
formatted_inputs = prompt.format()
tokens = int(len(formatted_inputs)/4)
self.rate_limiter.limit_call_and_input(tokens)
for chunk in chain.stream({}):
if self.handle_intervention(): break # wait for intervention and handle it, if paused
if isinstance(chunk, str): content = chunk
elif hasattr(chunk, "content"): content = str(chunk.content)
else: content = str(chunk)
if printer: printer.stream(content)
response+=content
self.rate_limiter.set_output_tokens(int(len(response)/4))
return response
def get_last_message(self):
if self.history:
return self.history[-1]
def replace_middle_messages(self,middle_messages):
cleanup_prompt = files.read_file("./prompts/fw.msg_cleanup.md")
summary = self.send_adhoc_message(system=cleanup_prompt,msg=self.concat_messages(middle_messages), output_label="Mid messages cleanup summary")
new_human_message = HumanMessage(content=summary)
return [new_human_message]
def cleanup_history(self, max:int, keep_start:int, keep_end:int):
if len(self.history) <= max:
return self.history
first_x = self.history[:keep_start]
last_y = self.history[-keep_end:]
# Identify the middle part
middle_part = self.history[keep_start:-keep_end]
# Ensure the first message in the middle is "human", if not, move one message back
if middle_part and middle_part[0].type != "human":
if len(first_x) > 0:
middle_part.insert(0, first_x.pop())
# Ensure the middle part has an odd number of messages
if len(middle_part) % 2 == 0:
middle_part = middle_part[:-1]
# Replace the middle part using the replacement function
new_middle_part = self.replace_middle_messages(middle_part)
self.history = first_x + new_middle_part + last_y
return self.history
def handle_intervention(self, progress:str="") -> bool:
while self.paused: time.sleep(0.1) # wait if paused
if self.intervention_message and not self.intervention_status: # if there is an intervention message, but not yet processed
if progress.strip(): self.append_message(progress) # append the response generated so far
user_msg = files.read_file("./prompts/fw.intervention.md", user_message=self.intervention_message) # format the user intervention template
self.append_message(user_msg,human=True) # append the intervention message
self.intervention_message = "" # reset the intervention message
self.intervention_status = True
return self.intervention_status # return intervention status
def process_tools(self, msg: str):
# search for tool usage requests in agent message
tool_request = extract_tools.json_parse_dirty(msg)
if tool_request is not None:
tool_name = tool_request.get("tool_name", "")
tool_args = tool_request.get("tool_args", {})
tool = self.get_tool(
tool_name,
tool_args,
msg)
if self.handle_intervention(): return # wait if paused and handle intervention message if needed
tool.before_execution(**tool_args)
if self.handle_intervention(): return # wait if paused and handle intervention message if needed
response = tool.execute(**tool_args)
if self.handle_intervention(): return # wait if paused and handle intervention message if needed
tool.after_execution(response)
if self.handle_intervention(): return # wait if paused and handle intervention message if needed
if response.break_loop: return response.message
else:
msg = files.read_file("prompts/fw.msg_misformat.md")
self.append_message(msg, human=True)
PrintStyle(font_color="red", padding=True).print(msg)
def get_tool(self, name: str, args: dict, message: str, **kwargs):
from python.tools.unknown import Unknown
from python.helpers.tool import Tool
tool_class = Unknown
if files.exists("python/tools",f"{name}.py"):
module = importlib.import_module("python.tools." + name) # Import the module
class_list = inspect.getmembers(module, inspect.isclass) # Get all functions in the module
for cls in class_list:
if cls[1] is not Tool and issubclass(cls[1], Tool):
tool_class = cls[1]
break
return tool_class(agent=self, name=name, args=args, message=message, **kwargs)
def fetch_memories(self,reset_skip=False):
if self.config.auto_memory_count<=0: return ""
if reset_skip: self.memory_skip_counter = 0
if self.memory_skip_counter > 0:
self.memory_skip_counter-=1
return ""
else:
self.memory_skip_counter = self.config.auto_memory_skip
from python.tools import memory_tool
messages = self.concat_messages(self.history)
memories = memory_tool.search(self,messages)
input = {
"conversation_history" : messages,
"raw_memories": memories
}
cleanup_prompt = files.read_file("./prompts/msg.memory_cleanup.md").replace("{", "{{")
clean_memories = self.send_adhoc_message(cleanup_prompt,json.dumps(input), output_label="Memory injection")
return clean_memories
def call_extension(self, name: str, **kwargs) -> Any:
pass