Welcome to the Python Data Engineering Journey repository! 🚀 This structured learning path is designed to help you master Python for Data Engineering from fundamentals to advanced concepts, including hands-on projects and interview preparation.
Python_DE_Journey/
├── 01_Python_Fundamentals/
│ ├── variables_and_datatypes/
│ ├── control_flow/
│ ├── strings/
│ └── exercises/
├── 02_Data_Structures/
│ ├── lists/
│ ├── tuples/
│ ├── dictionaries/
│ ├── sets/
│ └── exercises/
├── 03_Functions_and_Modules/
│ ├── basic_functions/
│ ├── lambda_functions/
│ ├── custom_modules/
│ └── exercises/
├── 04_File_Operations/
│ ├── file_handling/
│ ├── exception_handling/
│ ├── csv_json_processing/
│ └── exercises/
├── 05_OOP/
│ ├── classes/
│ ├── inheritance/
│ ├── polymorphism/
│ └── exercises/
├── 06_Advanced_Python/
│ ├── decorators/
│ ├── generators/
│ ├── iterators/
│ └── exercises/
├── 07_Pandas/
│ ├── basics/
│ ├── data_manipulation/
│ ├── advanced_operations/
│ └── exercises/
├── 08_Database_Operations/
│ ├── sql_basics/
│ ├── crud_operations/
│ ├── batch_processing/
│ └── exercises/
├── 09_ETL/
│ ├── basic_pipeline/
│ ├── error_handling/
│ ├── logging/
│ └── exercises/
├── 10_Advanced_Concepts/
│ ├── parallel_processing/
│ ├── optimization/
│ └── exercises/
├── 11_Testing/
│ ├── unit_tests/
│ ├── integration_tests/
│ └── documentation/
├── Projects/
│ ├── etl_pipeline/
│ ├── data_processing/
│ └── final_project/
├── Interview_Prep/
│ ├── coding_problems/
│ ├── system_design/
│ └── common_questions/
├── README.md
└── requirements.txt
This repository is divided into theoretical concepts, practical exercises, and projects to ensure a hands-on approach to Data Engineering with Python. Below is a breakdown of what you will learn:
- Variables, Data Types, and Operators
- Control Flow (if-else, loops)
- String Manipulation
- Lists, Tuples, Dictionaries, and Sets
- Writing Functions, Lambda Functions
- Creating Custom Modules
- Reading & Writing Files
- Exception Handling
- CSV & JSON Processing
- Classes & Objects
- Inheritance, Polymorphism
- Decorators, Generators, Iterators
- Data Cleaning, Transformation, and Analysis
- SQL Basics, CRUD Operations, Batch Processing
- ETL Pipeline Development
- Error Handling & Logging
- Parallel Processing
- Performance Optimization
- Writing Unit & Integration Tests
- Code Documentation
- End-to-End Data Processing Pipeline
- ETL Pipeline Development
- Final Project Showcasing Data Engineering Skills
- SQL, Python & Data Engineering Coding Problems
- System Design Questions
- Common Interview Questions
Before starting, install the necessary dependencies:
pip install -r requirements.txtFeel free to contribute by improving the repository, adding exercises, or fixing bugs. Open a pull request if you have valuable additions!
If you have any questions, feel free to reach out!
🌐 LinkedIn: Your Profile
Happy Learning & Coding! 🚀