You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/getting_pretrained_models.md
+2
Original file line number
Diff line number
Diff line change
@@ -24,4 +24,6 @@ This page will be updated as more models become available.
24
24
- The best validation performance during training was iteration 358,000 with
25
25
validation accuracy 57.258% and loss 1.83948.
26
26
27
+
**R-CNN (ILSVRC13)**: The pure Caffe instantiation of the [R-CNN](https://github.com/rbgirshick/rcnn) model for ILSVRC13 detection. Download the model (230.8MB) by running `examples/imagenet/get_caffe_rcnn_imagenet_model.sh` from the Caffe root directory. This model was made by transplanting the R-CNN SVM classifiers into a `fc-rcnn` classification layer, provided here as an off-the-shelf Caffe detector. Try the [detection example](http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb) to see it in action. For the full details, refer to the R-CNN site. *N.B. For research purposes, make use of the official R-CNN package and not this example.*
28
+
27
29
Additionally, you will probably eventually need some auxiliary data (mean image, synset list, etc.): run `data/ilsvrc12/get_ilsvrc_aux.sh` from the root directory to obtain it.
0 commit comments