Skip to content

BM-K/Sentence-Embedding-Is-All-You-Need

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Korean-Sentence-Embedding

The Korean Sentence Embedding Repository provides pre-trained models that are ready for instant download and use. Moreover, it offers an environment that is well-suited for personalized model training.

Quick tour

Note
All the pretrained models are uploaded in Huggingface Model Hub. Check https://huggingface.co/BM-K

import torch
from transformers import AutoModel, AutoTokenizer

def cal_score(a, b):
    if len(a.shape) == 1: a = a.unsqueeze(0)
    if len(b.shape) == 1: b = b.unsqueeze(0)

    a_norm = a / a.norm(dim=1)[:, None]
    b_norm = b / b.norm(dim=1)[:, None]
    return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100

model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta-multitask')  # or 'BM-K/KoSimCSE-bert-multitask'
tokenizer = AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta-multitask')  # or 'BM-K/KoSimCSE-bert-multitask'

sentences = ['치타가 들판을 가로 질러 먹이를 쫓는다.',
             '치타 한 마리가 먹이 뒤에서 달리고 있다.',
             '원숭이 한 마리가 드럼을 연주한다.']

inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
embeddings, _ = model(**inputs, return_dict=False)

score01 = cal_score(embeddings[0][0], embeddings[1][0])  # 84.09
# '치타가 들판을 가로 질러 먹이를 쫓는다.' @ '치타 한 마리가 먹이 뒤에서 달리고 있다.'
score02 = cal_score(embeddings[0][0], embeddings[2][0])  # 23.21
# '치타가 들판을 가로 질러 먹이를 쫓는다.' @ '원숭이 한 마리가 드럼을 연주한다.'

Update history

** Updates on Mar.08.2023 **

  • Update Unsupervised Models

** Updates on Feb.24.2023 **

  • Upload KoSimCSE clustering example

** Updates on Nov.15.2022 **

  • Upload KoDiffCSE-unsupervised training code

** Updates on Oct.27.2022 **

  • Upload KoDiffCSE-unsupervised performance

** Updates on Oct.21.2022 **

  • Upload KoSimCSE-unsupervised performance

** Updates on Jun.01.2022 **

  • Release KoSimCSE-multitask models

** Updates on May.23.2022 **

  • Upload KoSentenceT5 training code
  • Upload KoSentenceT5 performance

** Updates on Mar.01.2022 **

  • Release KoSimCSE

** Updates on Feb.11.2022 **

  • Upload KoSimCSE training code
  • Upload KoSimCSE performance

** Updates on Jan.26.2022 **

  • Upload KoSBERT training code
  • Upload KoSBERT performance

Baseline Models

Baseline models used for korean sentence embedding - KLUE-PLMs

Model Embedding size Hidden size # Layers # Heads
KLUE-BERT-base 768 768 12 12
KLUE-RoBERTa-base 768 768 12 12

Warning
Large pre-trained models need a lot of GPU memory to train

Available Models

  1. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks [SBERT]-[EMNLP 2019]
  2. SimCSE: Simple Contrastive Learning of Sentence Embeddings [SimCSE]-[EMNLP 2021]
  3. Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models [Sentence-T5]-[ACL findings 2022]
  4. DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings [DiffCSE]-[NAACL 2022]

Datasets

Setups

Python Pytorch

KoSentenceBERT

  • 🤗 Model Training
  • Dataset (Supervised)
    • Training: snli_1.0_train.ko.tsv, sts-train.tsv (multi-task)
      • Performance can be further improved by adding multinli data to training.
    • Validation: sts-dev.tsv
    • Test: sts-test.tsv

KoSimCSE

  • 🤗 Model Training
  • Dataset (Supervised)
    • Training: snli_1.0_train.ko.tsv + multinli.train.ko.tsv (Supervised setting)
    • Validation: sts-dev.tsv
    • Test: sts-test.tsv
  • Dataset (Unsupervised)
    • Training: wiki_corpus.txt
    • Validation: sts-dev.tsv
    • Test: sts-test.tsv

KoSentenceT5

  • 🤗 Model Training
  • Dataset (Supervised)
    • Training: snli_1.0_train.ko.tsv + multinli.train.ko.tsv
    • Validation: sts-dev.tsv
    • Test: sts-test.tsv

KoDiffCSE

  • 🤗 Model Training
  • Dataset (Unsupervised)
    • Training: wiki_corpus.txt
    • Validation: sts-dev.tsv
    • Test: sts-test.tsv

Performance-supervised

Model Average Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSBERTSKT 77.40 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22
KoSBERT 80.39 82.13 82.25 80.67 80.75 80.69 80.78 77.96 77.90
KoSRoBERTa 81.64 81.20 82.20 81.79 82.34 81.59 82.20 80.62 81.25
KoSentenceBART 77.14 79.71 78.74 78.42 78.02 78.40 78.00 74.24 72.15
KoSentenceT5 77.83 80.87 79.74 80.24 79.36 80.19 79.27 72.81 70.17
KoSimCSE-BERTSKT 81.32 82.12 82.56 81.84 81.63 81.99 81.74 79.55 79.19
KoSimCSE-BERT 83.37 83.22 83.58 83.24 83.60 83.15 83.54 83.13 83.49
KoSimCSE-RoBERTa 83.65 83.60 83.77 83.54 83.76 83.55 83.77 83.55 83.64
KoSimCSE-BERT-multitask 85.71 85.29 86.02 85.63 86.01 85.57 85.97 85.26 85.93
KoSimCSE-RoBERTa-multitask 85.77 85.08 86.12 85.84 86.12 85.83 86.12 85.03 85.99

Performance-unsupervised

Model Average Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSRoBERTa-base N/A N/A 48.96 N/A N/A N/A N/A N/A N/A
KoSRoBERTa-large N/A N/A 51.35 N/A N/A N/A N/A N/A N/A
KoSimCSE-BERT 74.08 74.92 73.98 74.15 74.22 74.07 74.07 74.15 73.14
KoSimCSE-RoBERTa 75.27 75.93 75.00 75.28 75.01 75.17 74.83 75.95 75.01
KoDiffCSE-RoBERTa 77.17 77.73 76.96 77.21 76.89 77.11 76.81 77.74 76.97

Downstream tasks

License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

References

@misc{park2021klue,
    title={KLUE: Korean Language Understanding Evaluation},
    author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
    year={2021},
    eprint={2105.09680},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

@inproceedings{gao2021simcse,
   title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
   author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}

@article{ham2020kornli,
  title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
  author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
  journal={arXiv preprint arXiv:2004.03289},
  year={2020}
}

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}

@inproceedings{chuang2022diffcse,
   title={{DiffCSE}: Difference-based Contrastive Learning for Sentence Embeddings},
   author={Chuang, Yung-Sung and Dangovski, Rumen and Luo, Hongyin and Zhang, Yang and Chang, Shiyu and Soljacic, Marin and Li, Shang-Wen and Yih, Wen-tau and Kim, Yoon and Glass, James},
   booktitle={Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)},
   year={2022}
}