Simple Linear Regression Step 1: Data Preprocessing import pandas as pd import numpy as np import matplotlib.pyplot as plt dataset = pd.read_csv('studentscores.csv') X = dataset.iloc[ : , : 1 ].values Y = dataset.iloc[ : , 1 ].values from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) Step 2: Fitting Simple Linear Regression Model to the training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train) Step 3: Predecting the Result Y_pred = regressor.predict(X_test) Step 4: Visualization Visualising the Training results plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') Visualizing the test results plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue')