-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNetwork_model.py
executable file
·314 lines (286 loc) · 12.7 KB
/
Network_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import torch
#import torchvision
#import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import torch.nn.functional as F
from collections import namedtuple
import random
import torch.optim as optim
#Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
State_value = namedtuple('Value', ('state','reward'))
input_size = 19218
class Net(nn.Module):
def __init__(self,n_in, n_mid, n_out):
super(Net,self).__init__()
#self.fc1 = nn.Linear(n_in, n_mid)
#self.fc2 = nn.Linear(n_mid, n_mid)
#self.fc3_adv = nn.Linear(n_mid, n_out)
#self.fc3_v = nn.Linear(n_mid,1)
# model.parameters()で学習パラメータのイテレータを取得できるが,
# listで保持しているとlist内のモジュールのパラメータは取得できない
# optimについては後述
self.fc1 = nn.Linear(n_in, n_mid)
#layer = [nn.Linear(n_mid,n_mid) for _ in range(38)]
layer = [ResNet(n_mid,n_mid) for _ in range(19)]
self.layer = nn.ModuleList(layer)
self.fc3_v = nn.Linear(n_mid,1)
def forward(self, x):
x = F.relu(self.fc1(x))
for i in range(19):
x = self.layer[i](x)
"""
blocks = [h0]
for i in range(19):
print(type(blocks[2*i]))
h1 = F.relu(self.layer[2*i](blocks[2*i]))
blocks.append(h1)
print(type(blocks[2 * i+1]))
h2 = F.relu(self.layer[2*i+1](h1) + blocks[2*i])
blocks.append(h2)
"""
#self.blocks = nn.ModuleList(blocks)
#h2 = F.relu(self.fc2(h1))
#val = self.fc3_v(h2)
#val = F.tanh(self.fc3_v(h2))
#val = torch.tanh(self.fc3_v(blocks[-1]))
#val = torch.sigmoid(self.fc3_v(blocks[-1]))
x = torch.sigmoid(self.fc3_v(x))
return x
class ResNet(nn.Module):
def __init__(self,n_in,n_out):
super(ResNet, self).__init__()
self.fc1 = nn.Linear(n_in, n_out)
self.fc2 = nn.Linear(n_in, n_out)
def forward(self, x):
h1 = F.relu(self.fc1(x))
h2 = F.relu(self.fc2(h1) + x)
return h2
def get_data(f):
input_field_data = []
for hand_card in f.players[0].hand:
input_field_data.extend(list(np.identity(4)[Card_Category[hand_card.card_category].value]))
input_field_data.extend([hand_card.cost])
input_field_data.extend(list(np.identity(1000)[hand_card.card_id+500]))
for j in range(len(f.players[0].hand),9):
input_field_data.extend(list(np.identity(4)[Card_Category.NONE.value]))
input_field_data.extend([0])
input_field_data.extend([0]*1000)
for i in range(2):
for card in f.card_location[i]:
#1000+2+15=1017次元
if card.card_category == "Creature":
input_field_data.extend(list(np.identity(1000)[card.card_id+500]))
input_field_data.extend([card.power, card.get_current_toughness(),])
embed_ability = [int(ability_id in card.ability) for ability_id in range(1, 16)]
input_field_data.extend(embed_ability)
#input_field_data.extend([card.card_id, card.power, card.get_current_toughness(),
# int(KeywordAbility.WARD.value in card.ability)])
else:
input_field_data.extend([0]*1000)
input_field_data.extend([0, 0])
input_field_data.extend([0] * 15)
for k in range(len(f.card_location[i]),5):
#input_field_data.extend([0, 0, 0, 0])
input_field_data.extend([0] * 1000)
input_field_data.extend([0, 0])
input_field_data.extend([0] * 15)
input_field_data.extend([f.players[0].life, f.players[1].life,f.current_turn[0]])
return input_field_data
Field_START = 27
LIFE_START = 67
def state_change_to_full(origin):
# [card_category,cost,card_id]*9*2 + [card_id,power,toughness,[ability]]*5*2+[life,life,turn]
# 3*9 + 4*10 + 3 = 27 + 40 +3 = 70
convert_states = []
for data in origin:
if len(origin) == 70:
cell = origin
else:
cell = data.state
assert len(cell) == 70,"cell_len:{}".format(len(cell))
tmp = []
for i in range(9):
tmp.extend(list(np.identity(4)[cell[3*i]]))
tmp.append(cell[3*i+1])
tmp.extend(list(np.identity(1000)[cell[3*i+2] + 500]))
#9*(4+1+1000) = 9*1005 = 9045
for i in range(10):
j = Field_START + 4*i
assert j % 4 == 3,"j={}".format(j)
assert type(cell[j]) == int and type(cell[j+1]) == int and type(cell[j+2]) == int\
and type(cell[j+3]) == list,"cell={}".format(cell[j:j+4])
tmp.extend(list(np.identity(1000)[cell[j] + 500]))
tmp.extend([cell[j+1], cell[j+2]])
embed_ability = [int(ability_id in cell[j+3]) for ability_id in range(1, 16)]
tmp.extend(embed_ability)
#10 *(1000+2+15) = 10170
#9045 + 10170 = 19215
assert len(cell[LIFE_START:]) == 3,"data:{}".format(cell[LIFE_START:])
tmp.extend(cell[LIFE_START:])
convert_states.append(torch.Tensor(tmp))
if len(origin) == 70:
break
return convert_states
class ReplayMemory:
def __init__(self, CAPACITY):
self.capacity = CAPACITY # メモリの最大長さ
self.memory = []
self.index = 0
def push(self, state, reward):
if len(self.memory) < self.capacity:
self.memory.append(None) #メモリが満タンじゃないときには追加
#[card_category,cost,card_id]*9*2 + [card_id,power,toughness,[ability]]*5*2+[life,life,turn]
#3*18 + 4*10 + 3 = 54 + 40 +3 = 97
self.memory[self.index] = State_value(state,reward)
self.index = (self.index + 1) % self.capacity
def sample(self, batch_size):
tmp = random.sample(self.memory, batch_size)
#[card_category,cost,card_id]*9*2 + [card_id,power,toughness,[ability]]*5*2+[life,life,turn]
#3*18 + 4*10 + 3 = 54 + 40 +3 = 97
inputs = state_change_to_full(tmp)
inputs = torch.stack(inputs, dim=0)
outputs = [cell.reward for cell in tmp]
outputs = torch.stack(outputs, dim=0)
#inputs = [cell.state for cell in tmp]
#inputs =torch.stack(inputs,dim=0)
#outputs = [cell.reward for cell in tmp]
#outputs = torch.stack(outputs, dim=0)
return inputs, outputs
#return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
def try_gpu(e):
if torch.cuda.is_available():
return e.cuda()
return e
#net = Net(10173,10,1)
net = Net(input_size,10,1)
#net = try_gpu(net)
deck_id_2_name = {0: "Sword_Aggro", 1: "Rune_Earth", 2: "Sword", 3: "Shadow", 4: "Dragon_PDK", 5: "Haven",
6: "Blood", 7: "Dragon", 8: "Forest", 9: "Rune", 10: "DS_Rune", -1: "Forest_Basic", -2: "Sword_Basic",
-3: "Rune_Basic",
-4: "Dragon_Basic", -5: "FOREST_Basic", -6: "Blood_Basic", -7: "Haven_Basic", -8: "Portal_Basic",
100: "Test",
-9: "Spell-Rune", 11: "PtP-Forest", 12: "Mid-Shadow", 13: "Neutral-Blood"}
key_2_tsv_name = {0: ["Sword_Aggro.tsv", "SWORD"], 1: ["Rune_Earth.tsv", "RUNE"], 2: ["Sword.tsv", "SWORD"],
3: ["New-Shadow.tsv", "SHADOW"], 4: ["Dragon_PDK.tsv", "DRAGON"], 5: ["Test-Haven.tsv", "HAVEN"],
6: ["Blood.tsv", "BLOOD"], 7: ["Dragon.tsv", "DRAGON"], 8: ["Forest.tsv", "FOREST"],
9: ["SpellBoost-Rune.tsv", "RUNE"], 10: ["Dimension_Shift_Rune.tsv", "RUNE"],
11: ["PtP_Forest.tsv", "FOREST"], 12: ["Mid_Shadow.tsv", "SHADOW"],
13: ["Neutral_Blood.tsv", "BLOOD"]}
if __name__ == "__main__":
from emulator_test import * # importの依存関係により必ず最初にimport
from Field_setting import *
from Player_setting import *
from Policy import *
parser = argparse.ArgumentParser(description='ニューラルネットワーク学習コード')
parser.add_argument('--episode_num', help='試行回数')
parser.add_argument('--epoch_num', help='エポック数')
parser.add_argument('--iteration_num', help='イテレーション数')
parser.add_argument('--memory_size', help='リプレイメモリーのサイズ')
parser.add_argument('--batch_size', help='バッチサイズ')
args = parser.parse_args()
print("args:{}".format(args))
CAPACITY = 10000
if args.memory_size is not None:
CAPACITY = int(args.memory_size)
import datetime
t1 = datetime.datetime.now()
print(t1)
print(net)
from Game_setting import Game
max_episode = 1000
if args.episode_num is not None:
max_episode = int(args.episode_num)
G = Game()
R = ReplayMemory(CAPACITY)
optimizer = optim.Adam(net.parameters())
dtype = torch.int
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Now sampling...")
for episode in tqdm(range(max_episode)):
f = Field(5)
p1 = Player(9, True, policy=AggroPolicy())
p1.name = "Alice"
deck_type1 = random.choice(list(key_2_tsv_name.keys()))
deck_type2 = random.choice(list(key_2_tsv_name.keys()))
d1 = tsv_to_deck(key_2_tsv_name[deck_type1][0])
d1.set_leader_class(key_2_tsv_name[deck_type1][1])
p2 = Player(9, False, policy=AggroPolicy())
p2.name = "Bob"
d2 = tsv_to_deck(key_2_tsv_name[deck_type2][0])
d2.set_leader_class(key_2_tsv_name[deck_type2][1])
d1.shuffle()
d2.shuffle()
p1.deck = d1
p2.deck = d2
f.players = [p1, p2]
p1.field = f
p2.field = f
train_data, reward = G.start_for_train_data(f, virtual_flg=True,target_player_num=episode%2)
for data in train_data:
R.push(data,torch.FloatTensor([reward]))
net.zero_grad()
print("sample_num:{}/{}".format(len(R.memory),CAPACITY))
epoch_num = 2
iteration_num = 1000
batch_size = 100
if args.epoch_num is not None:
epoch_num = int(args.epoch_num)
if args.iteration_num is not None:
iteration_num = int(args.iteration_num)
if args.batch_size is not None:
batch_size = int(args.batch_size)
for epoch in range(epoch_num):
print("epoch {}".format(epoch+1))
running_loss = 0.0
loss_history = []
for i in tqdm(range(iteration_num)):
inputs,targets = R.sample(batch_size)
optimizer.zero_grad()
#print(inputs[-1],targets[-1])
outputs = net(inputs)
#criterion = nn.MSELoss()
criterion = nn.SmoothL1Loss()
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % (iteration_num//10) == (iteration_num//10)-1: # print every 1000 mini-batches
loss_history.append((epoch + 1, i + 1, running_loss / (iteration_num//10)))
#print('[%d, %5d] loss: %.3f' %
# (epoch + 1, i + 1, running_loss / (iteration_num//10)))
running_loss = 0.0
print("losses")
for loss_id in loss_history:
print("[{} {}]:{:.3f}".format(loss_id[0],loss_id[1],loss_id[2]))
print("")
print('Finished Training')
#PATH = './value_net.pth'
import os
#PATH = './value_net.pth'
PATH = "model/{}_{}_{}_{}_{}_{}.pth".format(t1.year, t1.month, t1.day, t1.hour, t1.minute,
t1.second)
torch.save(net.state_dict(), PATH)
print("{} is saved.".format(PATH))
t2 = datetime.datetime.now()
print(t2-t1)
correct = 0
total = 0
criterion = nn.SmoothL1Loss()
for i in range(10):
inputs,targets = R.sample(100)
outputs = net(inputs)
loss = criterion(outputs, targets)
#accuracy = [int(outputs[j]*targets[j] > 0) for j in range(len(outputs))]
#accuracy = sum(accuracy) / len(outputs)
#print(inputs[0][:20])
#print(inputs[0][20:40])
#print(inputs[0][40:])
print(inputs[0][-3:])
print("output:{} target:{}".format(float(outputs[0]),float(targets[0])))
print("{} MSELoss: {:.3f}".format(i + 1, float(loss.item())))
#print("{} accuracy: {:.3%}".format(i+1,float(accuracy)))