Skip to content

Commit 6ac4b22

Browse files
committed
Minor updates to setup.py and GPU_flag
1 parent db2031a commit 6ac4b22

File tree

1 file changed

+14
-13
lines changed

1 file changed

+14
-13
lines changed

autoviml/Auto_NLP.py

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1525,19 +1525,20 @@ def Auto_NLP(nlp_column, train, test, target, score_type='',
15251525
#params['randomforestclassifier__max_depth'] = sp.stats.randint(2,10),
15261526
#params['randomforestclassifier__n_estimators'] = sp.stats.randint(200,500)
15271527
#### Adding a CalibratedClassifier to text classification tasks ########################
1528-
if modeltype != 'Regression':
1529-
if isinstance(target, list):
1530-
### There is no need for CalibratedClassifierCV in Multi-Label problems
1531-
pass
1532-
else:
1533-
if X_train.shape[0] <= 1000:
1534-
# This works well for small data sets and is similar to parametric
1535-
method= 'sigmoid' # 'isotonic' # #
1536-
else:
1537-
# This works well for large data sets and is non-parametric
1538-
method= 'isotonic'
1539-
calibrator_flag = True
1540-
print('Using a Calibrated Classifier in this Multi_Classification dataset to improve results...')
1528+
### Calibrated classifier is needed only for Logistic Regression models. Hence not needed here.
1529+
# if modeltype != 'Regression':
1530+
# if isinstance(target, list):
1531+
# ### There is no need for CalibratedClassifierCV in Multi-Label problems
1532+
# pass
1533+
# else:
1534+
# if X_train.shape[0] <= 1000:
1535+
# # This works well for small data sets and is similar to parametric
1536+
# method= 'sigmoid' # 'isotonic' # #
1537+
# else:
1538+
# # This works well for large data sets and is non-parametric
1539+
# method= 'isotonic'
1540+
# calibrator_flag = True
1541+
# print('Using a Calibrated Classifier in this classification problem to improve results...')
15411542
################ B U I L D I N G A P I P E L I N E H E R E ######################
15421543
if top_num_features < top_num_features_limit:
15431544
print("""Since top_num_features = %d, %s model selected. If you need different model, increase it >= %d.""" %(

0 commit comments

Comments
 (0)