-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdataset2lmdb.py
202 lines (159 loc) · 6.21 KB
/
dataset2lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import os.path as osp
import os, sys
import os.path as osp
import lmdb
import tqdm
import pyarrow as pa
import torch.utils.data as data
from torch.utils.data import DataLoader
import dataset
import numpy as np
def dumps_pyarrow(obj):
"""
Serialize an object.
Returns:
Implementation-dependent bytes-like object
"""
return pa.serialize(obj).to_buffer()
def dataset2lmdb(dataset, save_prefix, write_frequency=5000, max_num=400000, num_workers=16):
dataloader = DataLoader(dataset,num_workers=num_workers,shuffle=True)
if len(dataset) > max_num:
lmdb_split = 0
lmdb_path = "{}_{}.lmdb".format(save_prefix,lmdb_split)
lmdb_split += 1
else:
lmdb_path = "{}.lmdb".format(save_prefix)
if os.path.exists(lmdb_path):
print("{} already exists".format(lmdb_path))
exit(0)
isdir = os.path.isdir(lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=1099511627776 // 4, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
keys = []
for idx, data in enumerate(dataloader):
image, label, name = data[0].numpy(),data[1].numpy(),data[2][0]
keys.append(u'{}'.format(name).encode('ascii'))
txn.put(u'{}'.format(name).encode('ascii'), dumps_pyarrow((image, label)))
if idx >0 and idx % max_num ==0:
txn.commit()
with db.begin(write=True) as txn:
txn.put(b'__keys__', dumps_pyarrow(keys))
txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database to {} ...".format(lmdb_path))
db.sync()
db.close()
lmdb_path = "{}_{}.lmdb".format(save_prefix,lmdb_split)
lmdb_split += 1
isdir = os.path.isdir(lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=1099511627776 // 18, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
keys = []
if idx % write_frequency == 0:
print("[%d/%d]" % (idx, len(dataloader)))
txn.commit()
txn = db.begin(write=True)
txn.commit()
with db.begin(write=True) as txn:
txn.put(b'__keys__', dumps_pyarrow(keys))
txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database ...")
db.sync()
db.close()
def folder2lmdb(dpath, split="train",lmdb_path=None, write_frequency=5000, max_num=200000, num_workers=5):
if lmdb_path is None:
lmdb_path=dpath
ds = dataset.FSD50KDataset3(dpath,split=split)
dataloader = DataLoader(ds,num_workers=num_workers,shuffle=True)
i = iter(ds)
if len(ds) > max_num:
lmdb_split = 0
lmdb_path = osp.join(lmdb_path, "{}_{}.lmdb".format(split,lmdb_split))
lmdb_split += 1
else:
lmdb_path = osp.join(lmdb_path, "{}.lmdb".format(split))
if os.path.exists(lmdb_path):
print("{} already exists".format(lmdb_path))
exit(0)
isdir = os.path.isdir(lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=1099511627776 // 4, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
keys = []
for idx, data in enumerate(ds):
image, label, name = data[0].unsqueeze(0).numpy(),data[1].unsqueeze(0).numpy(),data[2]
keys.append(u'{}'.format(name).encode('ascii'))
txn.put(u'{}'.format(name).encode('ascii'), dumps_pyarrow((image, label)))
if idx >0 and idx % max_num ==0:
txn.commit()
with db.begin(write=True) as txn:
txn.put(b'__keys__', dumps_pyarrow(keys))
txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database to {} ...".format(lmdb_path))
db.sync()
db.close()
lmdb_path = osp.join(lmdb_path, "{}_{}.lmdb".format(split,lmdb_split))
lmdb_split += 1
isdir = os.path.isdir(lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=1099511627776 // 18, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
keys = []
if idx % write_frequency == 0:
print("[%d/%d]" % (idx, len(ds)))
txn.commit()
txn = db.begin(write=True)
txn.commit()
with db.begin(write=True) as txn:
txn.put(b'__keys__', dumps_pyarrow(keys))
txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database ...")
db.sync()
db.close()
return ds
class ImageFolderLMDB(data.Dataset):
def __init__(self, db_path, transform=None, target_transform=None):
self.db_path = db_path
self.env = lmdb.open(db_path, subdir=osp.isdir(db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
# self.length = txn.stat()['entries'] - 1
self.length =pa.deserialize(txn.get(b'__len__'))
self.keys= pa.deserialize(txn.get(b'__keys__'))
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
img, target = None, None
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
unpacked = pa.deserialize(byteflow)
waveform, label = unpacked
if self.transform is not None:
waveform = self.transform(waveform)
return waveform, label
def __len__(self):
return self.length
def __repr__(self):
return self.__class__.__name__ + ' (' + self.db_path + ')'
if __name__ == "__main__":
import sys
path,split = sys.argv[1:]
#folder2lmdb(path,split=split)
#ds = dataset.FSD50KDataset3(path,split=split,multilabel=True)
#dataset2lmdb(ds,save_prefix=os.path.join(path,split))
folder2lmdb(path,split="train")
"""
folder2lmdb(path,split="eval")
folder2lmdb(path,split="train")
"""
ds = ImageFolderLMDB(os.path.join(path,"train.lmdb"))
i = iter(ds)
next(i)