forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstall.sh
executable file
·103 lines (85 loc) · 3.02 KB
/
install.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/bin/bash
# This script is meant to be called by the "install" step defined in
# .travis.yml. See http://docs.travis-ci.com/ for more details.
# The behavior of the script is controlled by environment variabled defined
# in the .travis.yml in the top level folder of the project.
# License: 3-clause BSD
# Travis clone scikit-learn/scikit-learn repository in to a local repository.
# We use a cached directory with three scikit-learn repositories (one for each
# matrix entry) from which we pull from local Travis repository. This allows
# us to keep build artefact for gcc + cython, and gain time
set -e
# Fix the compilers to workaround avoid having the Python 3.4 build
# lookup for g++44 unexpectedly.
export CC=gcc
export CXX=g++
echo 'List files from cached directories'
echo 'pip:'
ls $HOME/.cache/pip
echo 'download'
ls $HOME/download
if [[ "$DISTRIB" == "conda" ]]; then
# Deactivate the travis-provided virtual environment and setup a
# conda-based environment instead
deactivate
# Use the miniconda installer for faster download / install of conda
# itself
pushd .
cd
mkdir -p download
cd download
echo "Cached in $HOME/download :"
ls -l
echo
if [[ ! -f miniconda.sh ]]
then
wget http://repo.continuum.io/miniconda/Miniconda-3.6.0-Linux-x86_64.sh \
-O miniconda.sh
fi
chmod +x miniconda.sh && ./miniconda.sh -b
cd ..
export PATH=/home/travis/miniconda/bin:$PATH
conda update --yes conda
popd
# Configure the conda environment and put it in the path using the
# provided versions
conda create -n testenv --yes python=$PYTHON_VERSION pip nose \
numpy=$NUMPY_VERSION scipy=$SCIPY_VERSION cython=$CYTHON_VERSION
source activate testenv
# Install nose-timer via pip
pip install nose-timer
# Resolve MKL usage
if [[ "$INSTALL_MKL" == "true" ]]; then
conda install --yes mkl
else
conda remove --yes --features mkl || echo "MKL not installed"
fi
elif [[ "$DISTRIB" == "ubuntu" ]]; then
# At the time of writing numpy 1.9.1 is included in the travis
# virtualenv but we want to used numpy installed through apt-get
# install.
deactivate
# Create a new virtualenv using system site packages for numpy and scipy
virtualenv --system-site-packages testvenv
source testvenv/bin/activate
pip install nose nose-timer
pip install cython
fi
if [[ "$COVERAGE" == "true" ]]; then
pip install coverage coveralls
fi
GIT_TRAVIS_REPO=$(pwd)
echo $GIT_TRAVIS_REPO
cd $HOME
if [ ! -d "sklearn_build_$NAME" ]; then
mkdir sklearn_build_$NAME
fi
rsync -av --exclude='.git/' --exclude='testvenv/' $GIT_TRAVIS_REPO \
sklearn_build_${NAME}
cd sklearn_build_${NAME}/scikit-learn
# Build scikit-learn in the install.sh script to collapse the verbose
# build output in the travis output when it succeeds.
python --version
python -c "import numpy; print('numpy %s' % numpy.__version__)"
python -c "import scipy; print('scipy %s' % scipy.__version__)"
python setup.py develop