- Getting Started with the OpenSearch Python Client
To add the client to your project, install it using pip:
pip install opensearch-py
Then import it like any other module:
from opensearchpy import OpenSearch
If you prefer to add the client manually or just want to examine the source code, see opensearch-py on GitHub.
In the example given below, we create a client, an index with non-default settings, insert a document in the index, search for the document, delete the document and finally delete the index.
from opensearchpy import OpenSearch
host = 'localhost'
port = 9200
auth = ('admin', 'admin') # For testing only. Don't store credentials in code.
ca_certs_path = '/full/path/to/root-ca.pem' # Provide a CA bundle if you use intermediate CAs with your root CA.
# Optional client certificates if you don't want to use HTTP basic authentication.
# client_cert_path = '/full/path/to/client.pem'
# client_key_path = '/full/path/to/client-key.pem'
# Create the client with SSL/TLS enabled, but hostname verification disabled.
client = OpenSearch(
hosts = [{'host': host, 'port': port}],
http_compress = True, # enables gzip compression for request bodies
http_auth = auth,
# client_cert = client_cert_path,
# client_key = client_key_path,
use_ssl = True,
verify_certs = True,
ssl_assert_hostname = False,
ssl_show_warn = False,
ca_certs = ca_certs_path
)
# Create an index with non-default settings.
index_name = 'python-test-index3'
index_body = {
'settings': {
'index': {
'number_of_shards': 4
}
}
}
response = client.indices.create(index_name, body=index_body)
print('\nCreating index:')
print(response)
document = {
'title': 'Moneyball',
'director': 'Bennett Miller',
'year': '2011'
}
id = '1'
response = client.index(
index = index_name,
body = document,
id = id,
refresh = True
)
print('\nAdding document:')
print(response)
docs = '{"index": {"_index": "index-2022-06-08", "_id": "1"}} \n
{"name": "foo"} \n
{"index": {"_index": "index-2022-06-09", "_id": "2"}} \n
{"name": "bar"} \n
{"index": {"_index": "index-2022-06-10", "_id": "3"}} \n
{"name": "baz"}'
response = client.bulk(docs)
print('\nAdding bulk documents:')
print(response)
docs = []
def generate_data():
mywords = ['foo', 'bar', 'baz']
for index, word in enumerate(mywords):
docs.append({
"_index": "mywords",
"word": word,
"_id": index
})
return docs
response = helpers.bulk(client, generate_data(), max_retries=3)
print('\nAdding bulk documents using helper:')
print(response)
q = 'miller'
query = {
'size': 5,
'query': {
'multi_match': {
'query': q,
'fields': ['title^2', 'director']
}
}
}
response = client.search(
body = query,
index = index_name
)
print('\nSearch results:')
print(response)
response = client.delete(
index = index_name,
id = id
)
print('\nDeleting document:')
print(response)
response = client.indices.delete(
index = index_name
)
print('\nDeleting index:')
print(response)
# create a point in time on a index
index_name = "test-index"
response = client.create_point_in_time(index=index_name,
keep_alive="1m")
pit_id = response.get("pit_id")
print('\n Point in time ID:')
print(pit_id)
# To list all point in time which are alive in the cluster
response = client.list_all_point_in_time()
print('\n List of all Point in Time:')
print(response)
# To delete point in time
pit_body = {
"pit_id": [pit_id]
}
# To delete all point in time
# client.delete_point_in_time(body=None, all=True)
response = client.delete_point_in_time(body=pit_body)
print('\n The deleted point in time:')
print(response)
Plugin client definitions can be found here --
print('\Searching for monitors:')
query = {
"query": {
"match" : {
"monitor.name": "test-monitor"
}
}
}
response = client.plugins.alerting.search_monitor(query)
print(response)
print('\Getting a monitor:')
response = client.plugins.alerting.get_monitor("monitorID")
print(response)
print('\Creating a bucket level monitor:')
query = {
"type": "monitor",
"name": "Demo bucket-level monitor",
"monitor_type": "bucket_level_monitor",
"enabled": True,
"schedule": {
"period": {
"interval": 1,
"unit": "MINUTES"
}
},
"inputs": [
{
"search": {
"indices": [
"python-test-index3"
],
"query": {
"size": 0,
"query": {
"bool": {
"filter": [
{
"range": {
"order_date": {
"from": "||-1h",
"to": "",
"include_lower": True,
"include_upper": True,
"format": "epoch_millis"
}
}
}
]
}
},
"aggregations": {
"composite_agg": {
"composite": {
"sources": [
{
"user": {
"terms": {
"field": "user"
}
}
}
]
},
"aggregations": {
"avg_products_base_price": {
"avg": {
"field": "products.base_price"
}
}
}
}
}
}
}
}
],
}
response = client.plugins.alerting.create_monitor(query)
print(response)
print('\Creating an email destination:')
query = {
"type": "email",
"name": "my-email-destination",
"email": {
"email_account_id": "YjY7mXMBx015759_IcfW",
"recipients": [
{
"type": "email_group",
"email_group_id": "YzY-mXMBx015759_dscs"
},
{
"type": "email",
"email": "example@email.com"
}
]
}
}
response = client.plugins.alerting.create_destination(query)
print(response)
print('\Getting alerts:')
response = client.plugins.alerting.get_alerts()
print(response)
print('\Acknowledge alerts:')
query = {
"alerts": ["eQURa3gBKo1jAh6qUo49"]
}
response = client.plugins.alerting.acknowledge_alert(query)
print(response)
Refer the AWS documentation regarding usage of IAM credentials to sign requests to OpenSearch APIs - Signing HTTP requests to Amazon OpenSearch Service.
Opensearch-py client library also provides an in-house IAM based authentication feature, AWSV4SignerAuth
that will help users to connect to their opensearch clusters by making use of IAM roles.
-
Python version 3.6 or above,
-
Install botocore using pip
pip install botocore
Here is the sample code that uses AWSV4SignerAuth
-
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth
import boto3
host = '' # cluster endpoint, for example: my-test-domain.us-east-1.es.amazonaws.com
region = 'us-west-2'
credentials = boto3.Session().get_credentials()
auth = AWSV4SignerAuth(credentials, region)
index_name = 'python-test-index3'
client = OpenSearch(
hosts = [{'host': host, 'port': 443}],
http_auth = auth,
use_ssl = True,
verify_certs = True,
connection_class = RequestsHttpConnection
)
q = 'miller'
query = {
'size': 5,
'query': {
'multi_match': {
'query': q,
'fields': ['title^2', 'director']
}
}
}
response = client.search(
body = query,
index = index_name
)
print('\nSearch results:')
print(response)