-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuantumDice.py
39 lines (29 loc) · 1.03 KB
/
QuantumDice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from pyquil import Program, get_qc
from pyquil.gates import H
def throw_octahedral_die():
qvm = get_qc("3q-qvm") #logb2(8) = 3
prog = Program() # create program
ro = prog.declare("ro", "BIT", 3) #declare output memory space
for q in range(3):
prog += H(q) #apply Hadamard gate to each qubit to create equal probability
for q in range(3):
prog.measure(q, ro[q]) #check if the cät is dead
result = qvm.run(qvm.compile(prog))[0]
temp = 0
for q in result: #bin to dec
temp = 2*temp + q
return temp + 1 #shift 0 -> 1
def throw_polyhedral_die(n): #extend to any-sided die
qubits = int(math.ceil(math.log(n, 2)) #get number of qubits needed
qvm = get_qc(f"{qubits}q-qvm")
prog = Program()
ro = prog.declare("ro", "BIT", qubits)
for q in range(qubits):
prog += H(q)
for q in range(qubits):
prog.measure(q, ro[q])
result = qvm.run(qvm.compile(prog))[0]
temp = 0
for q in result:
temp = 2*temp + q
return int(math.floor(temp*(n/2**qubits))+1) #a bit of an unfair scaling down