|
| 1 | +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#include "paddle/fluid/operators/matrix_rank_op.h" |
| 16 | +#include <memory> |
| 17 | +#include <string> |
| 18 | +#include "paddle/fluid/operators/elementwise/elementwise_op_function.h" |
| 19 | +#include "paddle/fluid/operators/svd_helper.h" |
| 20 | + |
| 21 | +#ifdef PADDLE_WITH_MKLDNN |
| 22 | +#include "paddle/fluid/platform/mkldnn_helper.h" |
| 23 | +#endif |
| 24 | + |
| 25 | +namespace paddle { |
| 26 | +namespace operators { |
| 27 | +using DDim = framework::DDim; |
| 28 | + |
| 29 | +namespace detail { |
| 30 | +static DDim GetInputBatchDim(const DDim& dim_x) { |
| 31 | + auto x_vec = framework::vectorize(dim_x); |
| 32 | + if (x_vec.size() == 2) { |
| 33 | + return framework::make_ddim({1}); |
| 34 | + } |
| 35 | + x_vec.erase(x_vec.end() - 2, x_vec.end()); |
| 36 | + return framework::make_ddim(x_vec); |
| 37 | +} |
| 38 | +} // namespace detail |
| 39 | + |
| 40 | +class MatrixRankeOp : public framework::OperatorWithKernel { |
| 41 | + public: |
| 42 | + using framework::OperatorWithKernel::OperatorWithKernel; |
| 43 | + |
| 44 | + void InferShape(framework::InferShapeContext* ctx) const override { |
| 45 | + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "MatrixRank"); |
| 46 | + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MatrixRank"); |
| 47 | + auto dim_x = ctx->GetInputDim("X"); |
| 48 | + PADDLE_ENFORCE_GE(dim_x.size(), 2, |
| 49 | + platform::errors::InvalidArgument( |
| 50 | + "The dims of input must be greater than 2")); |
| 51 | + |
| 52 | + bool hermitian = ctx->Attrs().Get<bool>("hermitian"); |
| 53 | + if (hermitian) { |
| 54 | + int rows = dim_x[dim_x.size() - 2]; |
| 55 | + int cols = dim_x[dim_x.size() - 1]; |
| 56 | + PADDLE_ENFORCE_EQ(rows, cols, |
| 57 | + platform::errors::InvalidArgument( |
| 58 | + "if hermitian == true, matrix should be n*n")); |
| 59 | + } |
| 60 | + |
| 61 | + DDim dim_x_batch = detail::GetInputBatchDim(dim_x); |
| 62 | + if (ctx->Attrs().Get<bool>( |
| 63 | + "use_default_tol")) { // user not input TolTensor and tol |
| 64 | + ctx->SetOutputDim("Out", dim_x_batch); |
| 65 | + } else if (ctx->HasInput("TolTensor")) { |
| 66 | + auto dim_tol = ctx->GetInputDim("TolTensor"); |
| 67 | + if (dim_x_batch == dim_tol) { |
| 68 | + ctx->SetOutputDim("Out", dim_x_batch); |
| 69 | + } else { |
| 70 | + int max_dim = std::max(dim_x_batch.size(), dim_tol.size()); |
| 71 | + int axis = std::abs(dim_x_batch.size() - dim_tol.size()); |
| 72 | + std::vector<int> x_batch_dims_array(max_dim); |
| 73 | + std::vector<int> tol_dims_array(max_dim); |
| 74 | + std::vector<int> out_dims_array(max_dim); |
| 75 | + GetBroadcastDimsArrays(dim_x_batch, dim_tol, x_batch_dims_array.data(), |
| 76 | + tol_dims_array.data(), out_dims_array.data(), |
| 77 | + max_dim, axis); |
| 78 | + for (auto& it : out_dims_array) { |
| 79 | + VLOG(3) << "out dims: " << it; |
| 80 | + } |
| 81 | + ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array)); |
| 82 | + } |
| 83 | + } else { |
| 84 | + ctx->SetOutputDim("Out", dim_x_batch); |
| 85 | + } |
| 86 | + ctx->ShareLoD("X", /*->*/ "Out"); |
| 87 | + } |
| 88 | + |
| 89 | + protected: |
| 90 | + framework::OpKernelType GetExpectedKernelType( |
| 91 | + const framework::ExecutionContext& ctx) const override { |
| 92 | + framework::LibraryType library{framework::LibraryType::kPlain}; |
| 93 | + framework::DataLayout layout = framework::DataLayout::kAnyLayout; |
| 94 | + auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); |
| 95 | + return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library); |
| 96 | + } |
| 97 | +}; |
| 98 | + |
| 99 | +class MatrixRankeOpMaker : public framework::OpProtoAndCheckerMaker { |
| 100 | + public: |
| 101 | + void Make() override { |
| 102 | + AddInput("X", "(Tensor), The input tensor of matrix_rank op."); |
| 103 | + AddInput("TolTensor", "(optional) Tol tensor, shape is same as X batch.") |
| 104 | + .AsDispensable(); |
| 105 | + AddOutput("Out", "(Tensor), The output tensor of matrix_rank op."); |
| 106 | + AddAttr<float>("tol", "(float, optional). tol").SetDefault(0.0f); |
| 107 | + AddAttr<bool>("use_default_tol", |
| 108 | + "represent whether user input TolTensor/tol, if input " |
| 109 | + "TolTensor/tol use_default_tol=true, otherwise " |
| 110 | + "use_default_tol=false") |
| 111 | + .SetDefault(true); |
| 112 | + AddAttr<bool>("hermitian", "(bool, optional). whether is hermitian matrix") |
| 113 | + .SetDefault(false); |
| 114 | + AddComment(R"DOC(MatrixRank Operator. |
| 115 | + This operator is used to perform MatrixRank operation for batched matrics. |
| 116 | + $$out = matrix_rank(X, tol, hermitian)$$ |
| 117 | + )DOC"); |
| 118 | + } |
| 119 | +}; |
| 120 | + |
| 121 | +template <typename T> |
| 122 | +void BatchEigenvalues(const T* x_data, T* eigenvalues_data, int batches, |
| 123 | + int rows, int cols, int k) { |
| 124 | + // Eigen::Matrix API need non-const pointer. |
| 125 | + T* input = const_cast<T*>(x_data); |
| 126 | + int stride = rows * cols; |
| 127 | + for (int i = 0; i < batches; i++) { |
| 128 | + auto m = Eigen::Map< |
| 129 | + Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>( |
| 130 | + input + i * stride, rows, rows); |
| 131 | + Eigen::SelfAdjointEigenSolver< |
| 132 | + Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> |
| 133 | + eigen_solver(m); |
| 134 | + auto eigenvalues = eigen_solver.eigenvalues().cwiseAbs(); |
| 135 | + for (int j = 0; j < k; j++) { |
| 136 | + *(eigenvalues_data + i * k + j) = eigenvalues[j]; |
| 137 | + } |
| 138 | + } |
| 139 | +} |
| 140 | + |
| 141 | +template <typename T> |
| 142 | +void BatchSVD(const T* x_data, T* eigenvalues_data, int batches, int rows, |
| 143 | + int cols, int k) { |
| 144 | + // Eigen::Matrix API need non-const pointer. |
| 145 | + T* input = const_cast<T*>(x_data); |
| 146 | + int stride = rows * cols; |
| 147 | + Eigen::BDCSVD< |
| 148 | + Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> |
| 149 | + svd; |
| 150 | + for (int i = 0; i < batches; i++) { |
| 151 | + auto m = Eigen::Map< |
| 152 | + Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>( |
| 153 | + input + i * stride, rows, cols); |
| 154 | + svd.compute(m); |
| 155 | + auto res_s = svd.singularValues(); |
| 156 | + for (int j = 0; j < k; j++) { |
| 157 | + eigenvalues_data[i * k + j] = res_s[j]; |
| 158 | + } |
| 159 | + } |
| 160 | +} |
| 161 | + |
| 162 | +template <typename T> |
| 163 | +class MatrixRankCPUKernel : public framework::OpKernel<T> { |
| 164 | + public: |
| 165 | + void Compute(const framework::ExecutionContext& context) const override { |
| 166 | + const Tensor* x = context.Input<Tensor>("X"); |
| 167 | + auto* x_data = x->data<T>(); |
| 168 | + auto* out = context.Output<Tensor>("Out"); |
| 169 | + out->mutable_data<int64_t>(context.GetPlace()); |
| 170 | + bool hermitian = context.Attr<bool>("hermitian"); |
| 171 | + |
| 172 | + auto dim_x = x->dims(); |
| 173 | + auto dim_out = out->dims(); |
| 174 | + int rows = dim_x[dim_x.size() - 2]; |
| 175 | + int cols = dim_x[dim_x.size() - 1]; |
| 176 | + int k = std::min(rows, cols); |
| 177 | + auto numel = x->numel(); |
| 178 | + int batches = numel / (rows * cols); |
| 179 | + |
| 180 | + bool use_default_tol = context.Attr<bool>("use_default_tol"); |
| 181 | + const Tensor* atol_tensor = nullptr; |
| 182 | + Tensor temp_tensor; |
| 183 | + T rtol_T = 0; |
| 184 | + if (use_default_tol) { |
| 185 | + framework::TensorFromVector<T>(std::vector<T>{0}, |
| 186 | + context.device_context(), &temp_tensor); |
| 187 | + atol_tensor = &temp_tensor; |
| 188 | + rtol_T = std::numeric_limits<T>::epsilon() * std::max(rows, cols); |
| 189 | + } else if (context.HasInput("TolTensor")) { |
| 190 | + atol_tensor = context.Input<Tensor>("TolTensor"); |
| 191 | + } else { |
| 192 | + framework::TensorFromVector<T>(std::vector<T>{context.Attr<float>("tol")}, |
| 193 | + context.device_context(), &temp_tensor); |
| 194 | + atol_tensor = &temp_tensor; |
| 195 | + } |
| 196 | + |
| 197 | + Tensor eigenvalue_tensor; |
| 198 | + auto* eigenvalue_data = eigenvalue_tensor.mutable_data<T>( |
| 199 | + detail::GetEigenvalueDim(dim_x, k), context.GetPlace()); |
| 200 | + if (hermitian) { |
| 201 | + BatchEigenvalues<T>(x_data, eigenvalue_data, batches, rows, cols, k); |
| 202 | + } else { |
| 203 | + BatchSVD<T>(x_data, eigenvalue_data, batches, rows, cols, k); |
| 204 | + } |
| 205 | + |
| 206 | + auto dito_T = |
| 207 | + math::DeviceIndependenceTensorOperations<platform::CPUDeviceContext, T>( |
| 208 | + context); |
| 209 | + std::vector<int> max_eigenvalue_shape = framework::vectorize<int>( |
| 210 | + detail::RemoveLastDim(eigenvalue_tensor.dims())); |
| 211 | + Tensor max_eigenvalue_tensor = |
| 212 | + dito_T.ReduceMax(eigenvalue_tensor, max_eigenvalue_shape); |
| 213 | + |
| 214 | + Tensor temp_rtol_tensor; |
| 215 | + framework::TensorFromVector<T>(std::vector<T>{rtol_T}, &temp_rtol_tensor); |
| 216 | + Tensor rtol_tensor = dito_T.Mul(temp_rtol_tensor, max_eigenvalue_tensor); |
| 217 | + Tensor tol_tensor; |
| 218 | + tol_tensor.mutable_data<T>(dim_out, context.GetPlace()); |
| 219 | + ElementwiseComputeEx<GreaterElementFunctor<T>, platform::CPUDeviceContext, |
| 220 | + T, T>(context, atol_tensor, &rtol_tensor, -1, |
| 221 | + GreaterElementFunctor<T>(), &tol_tensor); |
| 222 | + |
| 223 | + tol_tensor.Resize(detail::NewAxisDim(tol_tensor.dims(), 1)); |
| 224 | + |
| 225 | + Tensor compare_result; |
| 226 | + compare_result.mutable_data<int>(detail::NewAxisDim(dim_out, k), |
| 227 | + context.GetPlace()); |
| 228 | + |
| 229 | + int axis = -1; |
| 230 | + if (eigenvalue_tensor.dims().size() >= tol_tensor.dims().size()) { |
| 231 | + ElementwiseComputeEx<GreaterThanFunctor<T>, platform::CPUDeviceContext, T, |
| 232 | + int>(context, &eigenvalue_tensor, &tol_tensor, axis, |
| 233 | + GreaterThanFunctor<T>(), &compare_result); |
| 234 | + } else { |
| 235 | + ElementwiseComputeEx<LessThanFunctor<T>, platform::CPUDeviceContext, T, |
| 236 | + int>(context, &eigenvalue_tensor, &tol_tensor, axis, |
| 237 | + LessThanFunctor<T>(), &compare_result); |
| 238 | + } |
| 239 | + auto dito_int = |
| 240 | + math::DeviceIndependenceTensorOperations<platform::CPUDeviceContext, |
| 241 | + int64_t>(context); |
| 242 | + std::vector<int> result_shape = framework::vectorize<int>(dim_out); |
| 243 | + Tensor result = dito_int.ReduceSum(compare_result, result_shape); |
| 244 | + out->ShareDataWith(result); |
| 245 | + } |
| 246 | +}; |
| 247 | + |
| 248 | +} // namespace operators |
| 249 | +} // namespace paddle |
| 250 | + |
| 251 | +namespace ops = paddle::operators; |
| 252 | + |
| 253 | +REGISTER_OPERATOR(matrix_rank, ops::MatrixRankeOp, ops::MatrixRankeOpMaker); |
| 254 | + |
| 255 | +REGISTER_OP_CPU_KERNEL(matrix_rank, ops::MatrixRankCPUKernel<float>, |
| 256 | + ops::MatrixRankCPUKernel<double>); |
0 commit comments