Implementation of the SIMBICON paper.
Here's a video of a running biped.
In order to visualize a motion, specify the target angles and other parameters in a .yml file. (See settings/config.yml
for an example of how to specify this file.)
Then run python simbicon.py
with relevant parameters as specified in the simbicon.py
file.
Example:
python simbicon.py -m jog -p settings/config.yml
CMA is used to optimize simbicon parameters (target angles, torso_kp, torso_kd, FSM time interval) for a given target velocity and style.
Look at cma.py
for details on what parameters to specify before optimization. Running this file will yield a yml file with saved parameters.
To visulize the optimized parameters, you can run the simbicon.py
file with the path to the optimized parameters.
Example: Here we use the initial parameters for jogging (which is at 1.8m/s) to optimize for faster running.
python cma.py -lm jog -sm running -sp settings/cma_config.yml -tv 3.5
We can then visualize the result:
python simbicon.py -m running -f cma_config.yml
Thanks to Ben Ling for the CMA optimization code and Michiel Van de Panne for helpful discussions.