Tensorflow implementation of DrNet
ssh ... Build the Docker image with
$ docker build --no-cache -t img-dockername-video .
Build the docker container:
$ NV_GPU=0,2 nvidia-docker run -it -v ~/projects/drnet-tflow/:/drnet-tflow/ -v /mnt/:/mnt/ -p 8894:8888 --name container-name img-dockername-video bash
python run.py --num_gpus 1 --batch_size 50 --size_pose_embedding 5 --size_content_embedding 128 --max_steps 12 --num_epochs 2000 --run_name r1
python run_lstm.py --num_gpus 1 --batch_size 40 --size_post_embedding 5 --size_content_embedding 128 --evaluate False --training True --num_epocs 10000 -- run_name r1_lstm --restore_dir_D /some/dir/D --restore_dir_Ep /some/dir/Ep --restore_dir_Ec /some/dir/Ec
Other hyperparameters are described in the run.py
and run_lstm.py
files.
Pose encoder Dimensions = 5 Content encoder Dimensions = 128 DCGAN Unet + DCGAN Pose Encoder
Decoder Loss
After 60k iterations: Original frame on the left, frame to be decoded the middle, decoder output on the right
Two 512 dimensional LSTMs, with tanh dense layer on top