Skip to content

Anmol6/DrNet-tflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

drnet-tflow

Tensorflow implementation of DrNet

ssh ... Build the Docker image with

$ docker build --no-cache -t img-dockername-video . 

Build the docker container:

$ NV_GPU=0,2 nvidia-docker run -it -v ~/projects/drnet-tflow/:/drnet-tflow/  -v /mnt/:/mnt/ -p 8894:8888 --name container-name img-dockername-video bash

Example Usage:

Training DrNet

python run.py --num_gpus 1 --batch_size 50 --size_pose_embedding 5 --size_content_embedding 128 --max_steps 12 --num_epochs 2000 --run_name r1  

Training LSTM for Video generation

python run_lstm.py --num_gpus 1 --batch_size 40 --size_post_embedding 5 --size_content_embedding 128 --evaluate False --training True --num_epocs 10000 -- run_name r1_lstm --restore_dir_D /some/dir/D --restore_dir_Ep /some/dir/Ep --restore_dir_Ec /some/dir/Ec

Other hyperparameters are described in the run.py and run_lstm.py files.

Results

Training DrNet on KTH

Pose encoder Dimensions = 5 Content encoder Dimensions = 128 DCGAN Unet + DCGAN Pose Encoder

Decoder Loss

After 60k iterations: Original frame on the left, frame to be decoded the middle, decoder output on the right

Training LSTM

Two 512 dimensional LSTMs, with tanh dense layer on top

L2 loss for predicted pose encodings:

Example of some generated video frames:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages