-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathDiffusion_training_demo.py
269 lines (236 loc) · 9.13 KB
/
Diffusion_training_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import functools
from tqdm import tqdm, trange
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
# @title Diffusion constant and noise strength
device = 'cuda' # @param ['cuda', 'cpu'] {'type':'string'}
def marginal_prob_std(t, sigma):
"""Compute the mean and standard deviation of $p_{0t}(x(t) | x(0))$.
Args:
t: A vector of time steps.
sigma: The $\sigma$ in our SDE.
Returns:
The standard deviation.
"""
t = torch.tensor(t, device=device)
return torch.sqrt((sigma ** (2 * t) - 1.) / 2. / np.log(sigma))
def diffusion_coeff(t, sigma):
"""Compute the diffusion coefficient of our SDE.
Args:
t: A vector of time steps.
sigma: The $\sigma$ in our SDE.
Returns:
The vector of diffusion coefficients.
"""
return torch.tensor(sigma ** t, device=device)
sigma = 25.0 # @param {'type':'number'}
marginal_prob_std_fn = functools.partial(marginal_prob_std, sigma=sigma)
diffusion_coeff_fn = functools.partial(diffusion_coeff, sigma=sigma)
#%%
#@title Training Loss function
def loss_fn_cond(model, x, y, marginal_prob_std, eps=1e-5):
"""The loss function for training score-based generative models.
Args:
model: A PyTorch model instance that represents a
time-dependent score-based model.
x: A mini-batch of training data.
marginal_prob_std: A function that gives the standard deviation of
the perturbation kernel.
eps: A tolerance value for numerical stability.
"""
random_t = torch.rand(x.shape[0], device=x.device) * (1. - eps) + eps
z = torch.randn_like(x)
std = marginal_prob_std(random_t)
perturbed_x = x + z * std[:, None, None, None]
score = model(perturbed_x, random_t, y=y)
loss = torch.mean(torch.sum((score * std[:, None, None, None] + z)**2, dim=(1,2,3)))
return loss
#%%
# @title Diffusion Model Sampler
def Euler_Maruyama_sampler(score_model,
marginal_prob_std,
diffusion_coeff,
batch_size=64,
x_shape=(1, 28, 28),
num_steps=500,
device='cuda',
eps=1e-3,
y=None):
"""Generate samples from score-based models with the Euler-Maruyama solver.
Args:
score_model: A PyTorch model that represents the time-dependent score-based model.
marginal_prob_std: A function that gives the standard deviation of
the perturbation kernel.
diffusion_coeff: A function that gives the diffusion coefficient of the SDE.
batch_size: The number of samplers to generate by calling this function once.
num_steps: The number of sampling steps.
Equivalent to the number of discretized time steps.
device: 'cuda' for running on GPUs, and 'cpu' for running on CPUs.
eps: The smallest time step for numerical stability.
Returns:
Samples.
"""
t = torch.ones(batch_size, device=device)
init_x = torch.randn(batch_size, *x_shape, device=device) \
* marginal_prob_std(t)[:, None, None, None]
time_steps = torch.linspace(1., eps, num_steps, device=device)
step_size = time_steps[0] - time_steps[1]
x = init_x
with torch.no_grad():
for time_step in tqdm(time_steps):
batch_time_step = torch.ones(batch_size, device=device) * time_step
g = diffusion_coeff(batch_time_step)
mean_x = x + (g ** 2)[:, None, None, None] * score_model(x, batch_time_step, y=y) * step_size
x = mean_x + torch.sqrt(step_size) * g[:, None, None, None] * torch.randn_like(x)
# Do not include any noise in the last sampling step.
return mean_x
#%%
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import functools
import math
from torch.optim import Adam
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
import tqdm
from tqdm.notebook import trange, tqdm
from torch.optim.lr_scheduler import MultiplicativeLR, LambdaLR
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
from einops import rearrange
#@title Diffusion Trainer
def train_score_model(score_model, dataset, lr, n_epochs, batch_size, ckpt_name,
marginal_prob_std_fn=marginal_prob_std_fn,
lr_scheduler_fn=lambda epoch: max(0.2, 0.98 ** epoch),
device="cuda",
callback=None): # resume=False,
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0)
optimizer = Adam(score_model.parameters(), lr=lr)
scheduler = LambdaLR(optimizer, lr_lambda=lr_scheduler_fn)
tqdm_epoch = trange(n_epochs)
for epoch in tqdm_epoch:
score_model.train()
avg_loss = 0.
num_items = 0
for x, y in tqdm(data_loader):
x = x.to(device)
loss = loss_fn_cond(score_model, x, y, marginal_prob_std_fn)
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_loss += loss.item() * x.shape[0]
num_items += x.shape[0]
scheduler.step()
lr_current = scheduler.get_last_lr()[0]
print('{} Average Loss: {:5f} lr {:.1e}'.format(epoch, avg_loss / num_items, lr_current))
# Print the averaged training loss so far.
tqdm_epoch.set_description('Average Loss: {:5f}'.format(avg_loss / num_items))
# Update the checkpoint after each epoch of training.
torch.save(score_model.state_dict(), f'ckpt_{ckpt_name}.pth')
if callback is not None:
score_model.eval()
callback(score_model, epoch, ckpt_name)
#%%
#%%
from tqdm import tqdm
from torch.utils.data import DataLoader, TensorDataset
from torchvision.datasets import CelebA
from torchvision.transforms import ToTensor, CenterCrop, Resize, Compose, Normalize
tfm = Compose([
Resize(32),
CenterCrop(32),
ToTensor(),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dataset_rsz = CelebA("/home/binxuwang/Datasets", target_type=["attr"],
transform=tfm, download=False) # ,"identity"
#%%
# def preprocess_dataset(dataset_rsz, ):
dataloader = DataLoader(dataset_rsz, batch_size=64, num_workers=8, shuffle=False)
x_col = []
y_col = []
for xs, ys in tqdm(dataloader):
x_col.append(xs)
y_col.append(ys)
x_col = torch.concat(x_col, dim=0)
y_col = torch.concat(y_col, dim=0)
print(x_col.shape)
print(y_col.shape)
nantoken = 40
maxlen = (y_col.sum(dim=1)).max()
yseq_data = torch.ones(y_col.size(0), maxlen, dtype=int).fill_(nantoken)
saved_dataset = TensorDataset(x_col, yseq_data)
# return saved_dataset
#%%
import matplotlib.pyplot as plt
def save_sample_callback(score_model, epocs, ckpt_name):
sample_batch_size = 64
num_steps = 250
y_samp = yseq_data[:sample_batch_size, :]
sampler = Euler_Maruyama_sampler
samples = sampler(score_model,
marginal_prob_std_fn,
diffusion_coeff_fn,
sample_batch_size,
x_shape=(3, 32, 32),
num_steps=num_steps,
device=device,
y=y_samp, )
denormalize = Normalize([-0.485/0.229, -0.456/0.224, -0.406/0.225],
[1/0.229, 1/0.224, 1/0.225])
samples = denormalize(samples).clamp(0.0, 1.0)
sample_grid = make_grid(samples, nrow=int(np.sqrt(sample_batch_size)))
plt.figure(figsize=(8, 8))
plt.axis('off')
plt.imshow(sample_grid.permute(1, 2, 0).cpu(), vmin=0., vmax=1.)
plt.tight_layout()
plt.savefig(f"samples_{ckpt_name}_{epocs}.png")
plt.show()
#%%
#@title Training model
# continue_training = False #@param {type:"boolean"}
# if not continue_training:
# print("initilize new score model...")
score_model = torch.nn.DataParallel(
UNet_Tranformer_attrb(marginal_prob_std=marginal_prob_std_fn))
score_model = score_model.to(device)
n_epochs = 50
batch_size = 1024
lr = 10e-4
train_score_model(score_model, saved_dataset, lr, n_epochs, batch_size,
"Unet-tfmer_pad", device="cuda", callback=save_sample_callback)
#%%
#%%
n_epochs = 50
batch_size = 1048
lr = 2e-4
train_score_model(score_model, saved_dataset, lr, n_epochs, batch_size,
"Unet-tfmer", device="cuda", callback=save_sample_callback)
#%%
sample_batch_size = 64 #@param {'type':'integer'}
num_steps = 250 #@param {'type':'integer'}
sampler = Euler_Maruyama_sampler #@param ['Euler_Maruyama_sampler', 'pc_sampler', 'ode_sampler'] {'type': 'raw'}
# score_model.eval()
## Generate samples using the specified sampler.
samples = sampler(score_model,
marginal_prob_std_fn,
diffusion_coeff_fn,
sample_batch_size,
x_shape=(3, 32, 32),
num_steps=num_steps,
device=device,
y=yseq_data[:sample_batch_size,:], )
## Sample visualization.
denormalize = Normalize([-0.485/0.229, -0.456/0.224, -0.406/0.225],
[1/0.229, 1/0.224, 1/0.225])
samples = denormalize(samples).clamp(0.0, 1.0)
sample_grid = make_grid(samples, nrow=int(np.sqrt(sample_batch_size)))
plt.figure(figsize=(8, 8))
plt.axis('off')
plt.imshow(sample_grid.permute(1, 2, 0).cpu(), vmin=0., vmax=1.)
plt.tight_layout()
plt.show()